Schwinger parametrization

{{Short description|Loop integral parametrization}}

{{more citations needed|date=July 2022}}

Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.

Using the well-known observation that

:\frac{1}{A^n}=\frac{1}{(n-1)!}\int^\infty_0 du \, u^{n-1}e^{-uA},

Julian Schwinger noticed that one may simplify the integral:

:\int \frac{dp}{A(p)^n}=\frac{1}{\Gamma(n)}\int dp \int^\infty_0 du \, u^{n-1}e^{-uA(p)}=\frac{1}{\Gamma(n)}\int^\infty_0 du \, u^{n-1} \int dp \, e^{-uA(p)},

for Re(n)>0.

Another version of Schwinger parametrization is:

:\frac{i}{A+i\epsilon}=\int^\infty_0 du \, e^{iu(A+i\epsilon)},

which is convergent as long as \epsilon >0 and A \in \mathbb R.{{cite book|first=M. D.|last=Schwartz|title=Quantum Field Theory and the Standard Model|publisher=Cambridge University Press|date=2014|chapter=33|edition=9|page=705|isbn=9781107034730}} It is easy to generalize this identity to n denominators.

See also

References

{{Reflist}}

Category:Quantum field theory

{{applied-math-stub}}

{{quantum-stub}}