Section formula

{{Short description|Geometric formula for finding the ratio in which a line segment is divided by a point}}

{{Orphan|date=March 2022}}

In coordinate geometry, the Section formula is a formula used to find the ratio in which a line segment is divided by a point internally or externally.{{Citation|last1=Clapham|first1=Christopher|title=section formulae|date=2014-09-18|url=https://www.oxfordreference.com/view/10.1093/acref/9780199679591.001.0001/acref-9780199679591-e-2546|work=The Concise Oxford Dictionary of Mathematics|publisher=Oxford University Press|language=en|doi=10.1093/acref/9780199679591.001.0001|isbn=978-0-19-967959-1|access-date=2020-10-30|last2=Nicholson|first2=James|url-access=subscription}} It is used to find out the centroid, incenter and excenters of a triangle. In physics, it is used to find the center of mass of systems, equilibrium points, etc.{{Cite web|title=Section Formula {{!}} Brilliant Math & Science Wiki|url=https://brilliant.org/wiki/section-formula/|access-date=2020-10-16|website=brilliant.org|language=en-us}}{{Cite web| title=Coordinate Geometry | url=https://ncert.nic.in/ncerts/l/jemh107.pdf | archive-url=https://web.archive.org/web/20160626111706/http://www.ncert.nic.in:80/ncerts/l/jemh107.pdf | archive-date=2016-06-26}}{{Cite book|last=Aggarwal|first=R.S.|title=Secondary School Mathematics for Class 10|publisher=Bharti Bhawan Publishers & Distributors (1 January 2020)|isbn=978-9388704519}}{{Cite book|last=Sharma|first=R.D.|title=Mathematics for Class 10|publisher=Dhanpat Rai Publication (1 January 2020)|isbn=978-8194192640}}

Internal Divisions

File:Internal division.png

If point P (lying on AB) divides the line segment AB joining the points \mathrm{A}(x_1,y_1) and \mathrm{B}(x_2,y_2) in the ratio m:n, then

P = \left(\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n}\right){{Cite book|last=Loney|first=S L|title=The Elements of Coordinate Geometry (Part-1)}}

The ratio m:n can also be written as m/n:1, or k:1, where k=m/n. So, the coordinates of point P dividing the line segment joining the points \mathrm{A}(x_1,y_1) and \mathrm{B}(x_2,y_2) are:

\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)

=\left(\frac{\frac{m}{n}x_2 +x_1}{\frac{m}{n}+1},\frac{\frac{m}{n}y_2 +y_1}{\frac{m}{n}+1} \right )

=\left ( \frac{kx_2 +x_1}{k +1},\frac{ky_2 + y_1}{k +1} \right )

Similarly, the ratio can also be written as k:(1-k), and the coordinates of P are ((1-k)x_1 + kx_2, (1-k)y_1 + ky_2) .

= Proof =

Triangles PAQ\sim BPC .

:\begin{align}

\frac{AP}{BP}=\frac{AQ}{CP}=\frac{PQ}{BC}\\

\frac{m}{n}=\frac{x-x_1}{x_2-x}=\frac{y-y_1}{y_2-y}\\

mx_2-mx=nx-nx_1,my_2-my=ny-ny_1\\

mx+nx=mx_2+nx_1, my+ny=my_2+ny_1\\

(m+n)x=mx_2+nx_1, (m+n)y=my_2+ny_1\\

x=\frac{mx_2 + nx_1}{m + n}, y=\frac{my_2 + ny_1}{m + n}\\

\end{align}

External Divisions

File:External division.png

If a point P (lying on the extension of AB) divides AB in the ratio m:n then

P = \left(\dfrac{mx_2 - nx_1}{m - n}, \dfrac{my_2 - ny_1}{m - n}\right)

= Proof =

Triangles PAC\sim PBD (Let C and D be two points where A & P and B & P intersect respectively).

Therefore ∠ACP = ∠BDP

:\begin{align}

\frac{AB}{BP}=\frac{AC}{BD}=\frac{PC}{PD}\\

\frac{m}{n}=\frac{x-x_1}{x-x_2}=\frac{y-y_1}{y-y_2}\\

mx-mx_2=nx-nx_1,my-my_2=ny-ny_1\\

mx-nx=mx_2-nx_1, my-ny=my_2-ny_1\\

(m-n)x=mx_2-nx_1, (m-n)y=my_2-ny_1\\

x=\frac{mx_2 - nx_1}{m - n}, y=\frac{my_2 - ny_1}{m - n}\\

\end{align}

Midpoint formula

{{Main articles|Midpoint}}

The midpoint of a line segment divides it internally in the ratio 1:1. Applying the Section formula for internal division:

P = \left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2} \right)

= Derivation =

P = \left(\dfrac{mx_2 + nx_1}{m + n}, \dfrac{my_2 + ny_1}{m + n}\right)

= \left ( \frac{1\cdot x_1 + 1\cdot x_2}{1+1},\frac{1 \cdot y_1 + 1\cdot y_2}{1+1} \right )

=\left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2} \right)

Centroid

File:Centroid.svg

The centroid of a triangle is the intersection of the medians and divides each median in the ratio 2:1. Let the vertices of the triangle be A(x_1, y_1), B(x_2, y_2) and C(x_3, y_3). So, a median from point A will intersect BC at \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right).

Using the section formula, the centroid becomes:

:

\left(\frac{x_1 + x_2 + x_3}{3},\frac{y_1 + y_2 + y_3}{3} \right)

In 3-Dimensions

Let A and B be two points with Cartesian coordinates (x1, y1, z1) and (x2, y2, z2) and P be a point on the line through A and B. If AP:PB =m:n. Then the section formula gives the coordinates of P as

\left ( \frac{mx_2 + nx_1}{m +n} ,\frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n} \right ){{Citation|last1=Clapham|first1=Christopher|title=section formulae|date=2014-09-18|url=https://www.oxfordreference.com/view/10.1093/acref/9780199679591.001.0001/acref-9780199679591-e-2547|work=The Concise Oxford Dictionary of Mathematics|publisher=Oxford University Press|language=en|doi=10.1093/acref/9780199679591.001.0001|isbn=978-0-19-967959-1|access-date=2020-10-30|last2=Nicholson|first2=James|url-access=subscription}}

If, instead, P is a point on the line such that AP:PB = k:1-k, its coordinates are ((1-k)x_1 + kx_2, (1-k)y_1 + ky_2, (1-k)z_1 + kz_2).

In vectors

The position vector of a point P dividing the line segment joining the points A and B whose position vectors are \vec{a} and \vec{b}

  1. in the ratio m:n internally, is given by \frac{n\vec{a} + m\vec{b}}{m+n}{{Cite web| title=Vector Algebra | url=https://ncert.nic.in/ncerts/l/leep210.pdf | archive-url=https://web.archive.org/web/20161213040342/http://ncert.nic.in:80/ncerts/l/leep210.pdf | archive-date=2016-12-13}}
  2. in the ratio m:n externally, is given by \frac{m\vec{b} - n\vec{a}}{m-n}

See also

References

{{Reflist}}