Serre's modularity conjecture

{{Short description|Conjecture in number theory}}

{{Distinguish|Modularity theorem}}

{{Infobox mathematical statement

| name = Serre's modularity conjecture

| image =

| caption =

| field = Algebraic number theory

| conjectured by = Jean-Pierre Serre

| conjecture date = 1975

| first proof by = Chandrashekhar Khare
Jean-Pierre Wintenberger

| first proof date = 2008

}}

In mathematics, Serre's modularity conjecture, introduced by {{harvs|first=Jean-Pierre|last=Serre|authorlink=Jean-Pierre Serre|year1=1975|year2=1987|txt}}, states that an odd, irreducible, two-dimensional Galois representation over a finite field arises from a modular form. A stronger version of this conjecture specifies the weight and level of the modular form. The conjecture in the level 1 case was proved by Chandrashekhar Khare in 2005,{{Citation |last=Khare |first=Chandrashekhar |title=Serre's modularity conjecture: The level one case |year=2006 |journal=Duke Mathematical Journal |volume=134 |issue=3 |pages=557–589 |doi=10.1215/S0012-7094-06-13434-8 }}. and a proof of the full conjecture was completed jointly by Khare and Jean-Pierre Wintenberger in 2008.{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 }} and {{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 }}.

Formulation

The conjecture concerns the absolute Galois group G_\mathbb{Q} of the rational number field \mathbb{Q}.

Let \rho be an absolutely irreducible, continuous, two-dimensional representation of G_\mathbb{Q} over a finite field F = \mathbb{F}_{\ell^r}.

: \rho \colon G_\mathbb{Q} \rightarrow \mathrm{GL}_2(F).

Additionally, assume \rho is odd, meaning the image of complex conjugation has determinant -1.

To any normalized modular eigenform

: f = q+a_2q^2+a_3q^3+\cdots

of level N=N(\rho) , weight k=k(\rho) , and some Nebentype character

: \chi \colon \mathbb{Z}/N\mathbb{Z} \rightarrow F^*,

a theorem due to Shimura, Deligne, and Serre-Deligne attaches to f a representation

: \rho_f\colon G_\mathbb{Q} \rightarrow \mathrm{GL}_2(\mathcal{O}),

where \mathcal{O} is the ring of integers in a finite extension of \mathbb{Q}_\ell . This representation is characterized by the condition that for all prime numbers p, coprime to N\ell we have

: \operatorname{Trace}(\rho_f(\operatorname{Frob}_p))=a_p

and

: \det(\rho_f(\operatorname{Frob}_p))=p^{k-1} \chi(p).

Reducing this representation modulo the maximal ideal of \mathcal{O} gives a mod \ell representation \overline{\rho_f} of G_\mathbb{Q} .

Serre's conjecture asserts that for any representation \rho as above, there is a modular eigenform f such that

: \overline{\rho_f} \cong \rho .

The level and weight of the conjectural form f are explicitly conjectured in Serre's article. In addition, he derives a number of results from this conjecture, among them Fermat's Last Theorem and the now-proven Taniyama–Weil (or Taniyama–Shimura) conjecture, now known as the modularity theorem (although this implies Fermat's Last Theorem, Serre proves it directly from his conjecture).

Optimal level and weight

The strong form of Serre's conjecture describes the level and weight of the modular form.

The optimal level is the Artin conductor of the representation, with the power of l removed.

Proof

A proof of the level 1 and small weight cases of the conjecture was obtained in 2004 by Chandrashekhar Khare and Jean-Pierre Wintenberger,{{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=On Serre's reciprocity conjecture for 2-dimensional mod p representations of Gal(Q/Q) |journal=Annals of Mathematics |volume=169 |issue=1 |pages=229–253 |doi= 10.4007/annals.2009.169.229|doi-access=free }}. and by Luis Dieulefait,{{Citation |last=Dieulefait |first=Luis |year=2007 |title=The level 1 weight 2 case of Serre's conjecture |journal=Revista Matemática Iberoamericana |volume=23 |issue=3 |pages=1115–1124 |url=https://projecteuclid.org/euclid.rmi/1204128312 |doi=10.4171/rmi/525|arxiv=math/0412099 }}. independently.

In 2005, Chandrashekhar Khare obtained a proof of the level 1 case of Serre conjecture,{{Citation |last=Khare |first=Chandrashekhar |title=Serre's modularity conjecture: The level one case |year=2006 |journal=Duke Mathematical Journal |volume=134 |issue=3 |pages=557–589 |doi=10.1215/S0012-7094-06-13434-8 }}. and in 2008 a proof of the full conjecture in collaboration with Jean-Pierre Wintenberger.{{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 }} and {{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 }}.

Notes

{{Reflist}}

References

  • {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | department=Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974) |mr=0382173 | year=1975 | journal=Astérisque | issn=0303-1179 | volume=24–25 | title=Valeurs propres des opérateurs de Hecke modulo l | pages=109–117}}
  • {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Sur les représentations modulaires de degré 2 de Gal({{overline|Q}}/Q) | doi=10.1215/S0012-7094-87-05413-5 |mr=885783 | year=1987 | journal=Duke Mathematical Journal | issn=0012-7094 | volume=54 | issue=1 | pages=179–230}}
  • {{Citation | last1=Stein | first1=William A. | last2=Ribet | first2=Kenneth A. | editor1-last=Conrad | editor1-first=Brian | editor2-last=Rubin | editor2-first=Karl | title=Arithmetic algebraic geometry (Park City, UT, 1999) | publisher=American Mathematical Society | location=Providence, R.I. | series=IAS/Park City Math. Ser. | isbn=978-0-8218-2173-2 |mr=1860042 | year=2001 | volume=9 | chapter=Lectures on Serre's conjectures | pages=143–232}}

See also