Shehu transform
{{Short description|Integral transform generalizing both Laplace and Sumudu transforms}}
{{COI|date=June 2025}}
In mathematics, the Shehu transform is an integral transform which generalizes both the Laplace transform and the Sumudu integral transform. It was introduced by Shehu Maitama and Zhao Weidong{{Cite journal |last1=Maitama |first1=Shehu |last2=Zhao |first2=Weidong |date=2019-02-24 |title=New Integral Transform: Shehu Transform a Generalization of Sumudu and Laplace Transform for Solving Differential Equations |url=https://www.etamaths.com/index.php/ijaa/article/view/1771 |journal=International Journal of Analysis and Applications |language=en |volume=17 |issue=2 |pages=167–190 |issn=2291-8639}}{{Cite journal |last1=Maitama |first1=Shehu |last2=Zhao |first2=Weidong |date=2021 |title=New Laplace-type integral transform for solving steady heat-transfer problem |url=https://doiserbia.nb.rs/Article.aspx?id=0354-98361900160M |journal=Thermal Science |volume=25 |issue=1 Part A |pages=1–12|doi=10.2298/TSCI180110160M }} in 2019 and applied to both ordinary and partial differential equations.{{Cite journal |last1=Akinyemi |first1=Lanre |last2=Iyiola |first2=Olaniyi S. |date=2020 |title=Exact and approximate solutions of time-fractional models arising from physics via Shehu transform |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.6484 |journal=Mathematical Methods in the Applied Sciences |language=en |volume=43 |issue=12 |pages=7442–7464 |doi=10.1002/mma.6484 |bibcode=2020MMAS...43.7442A |issn=1099-1476}}{{Cite journal |last1=Maitama |first1=Shehu |last2=Zhao |first2=Weidong |date=2021-03-16 |title=Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives |url=https://link.springer.com/article/10.1007/s40314-021-01476-9 |journal=Computational and Applied Mathematics |language=en |volume=40 |issue=3 |pages=86 |doi=10.1007/s40314-021-01476-9 |issn=1807-0302}}{{Cite journal |last1=Yadav |first1=L. K. |last2=Agarwal |first2=G. |last3=Gour |first3=M. M. |last4=Akgül |first4=A. |last5=Misro |first5=Md Yushalify |last6=Purohit |first6=S. D. |date=2024-04-01 |title=A hybrid approach for non-linear fractional Newell-Whitehead-Segel model |url=https://www.sciencedirect.com/science/article/pii/S2090447924000200 |journal=Ain Shams Engineering Journal |volume=15 |issue=4 |pages=102645 |doi=10.1016/j.asej.2024.102645 |issn=2090-4479}}{{Cite journal |last1=Sartanpara |first1=Parthkumar P. |last2=Meher |first2=Ramakanta |date=2023-01-01 |title=A robust computational approach for Zakharov-Kuznetsov equations of ion-acoustic waves in a magnetized plasma via the Shehu transform |url=https://www.sciencedirect.com/science/article/pii/S2468013321001339 |journal=Journal of Ocean Engineering and Science |volume=8 |issue=1 |pages=79–90 |doi=10.1016/j.joes.2021.11.006 |bibcode=2023JOES....8...79S |issn=2468-0133}}{{Cite journal |last1=Abujarad |first1=Eman S. |last2=Jarad |first2=Fahd |last3=Abujarad |first3=Mohammed H. |last4=Baleanu |first4=Dumitru |date=August 2022 |title=APPLICATION OF q-SHEHU TRANSFORM ON q-FRACTIONAL KINETIC EQUATION INVOLVING THE GENERALIZED HYPER-BESSEL FUNCTION |url=https://www.worldscientific.com/doi/abs/10.1142/S0218348X2240179X |journal=Fractals |volume=30 |issue=5 |pages=2240179–2240240 |doi=10.1142/S0218348X2240179X |bibcode=2022Fract..3040179A |issn=0218-348X}}{{Cite journal |last1=Mlaiki |first1=Nabil |last2=Jamal |first2=Noor |last3=Sarwar |first3=Muhammad |last4=Hleili |first4=Manel |last5=Ansari |first5=Khursheed J. |date=2025-04-29 |title=Duality of Shehu transform with other well known transforms and application to fractional order differential equations |journal=PLOS ONE |language=en |volume=20 |issue=4 |pages=e0318157 |doi=10.1371/journal.pone.0318157 |doi-access=free |issn=1932-6203 |pmc=12040285 |pmid=40299951|bibcode=2025PLoSO..2018157M }}
Formal definition
The Shehu transform of a function is defined over the set of functions
as
where and are the Shehu transform variables. The Shehu transform converges to Laplace transform when the variable .
Inverse Shehu transform
Properties and theorems
class="wikitable"
|+ Properties of the Shehu transform ! Property !! Explanation | |
Linearity | Let the functions and be in set A. Then |
Change of scale | Let the function be in set A, where in an arbitrary constant. Then |
Exponential shifting | Let the function be in set A and is an arbitrary constant. Then |
Multiple shift | Let and . Then |