Siegel upper half-space

{{Short description|Set of complex matrices with positive definite imaginary part}}

In mathematics, the Siegel upper half-space of degree g (or genus g) (also called the Siegel upper half-plane) is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by {{harvs|txt|authorlink=Carl Ludwig Siegel|last=Siegel|year=1939}}. It is the symmetric space associated to the symplectic group {{math|Sp(2g, R)}}.

The Siegel upper half-space has properties as a complex manifold that generalize the properties of the upper half-plane, which is the Siegel upper half-space in the special case g = 1. The group of automorphisms preserving the complex structure of the manifold is isomorphic to the symplectic group {{math|Sp(2g, R)}}. Just as the two-dimensional hyperbolic metric is the unique (up to scaling) metric on the upper half-plane whose isometry group is the complex automorphism group {{math|SL(2, R)}} = {{math|Sp(2, R)}}, the Siegel upper half-space has only one metric up to scaling whose isometry group is {{math|Sp(2g, R)}}. Writing a generic matrix Z in the Siegel upper half-space in terms of its real and imaginary parts as Z = X + iY, all metrics with isometry group {{math|Sp(2g, R)}} are proportional to

:d s^2 = \text{tr}(Y^{-1} dZ Y^{-1} d \bar{Z}).

The Siegel upper half-plane can be identified with the set of tame almost complex structures compatible with a symplectic structure \omega, on the underlying 2n dimensional real vector space V, that is, the set of J \in \mathrm{Hom}(V) such that J^2 = -1 and \omega(Jv, v) > 0 for all vectors v \ne 0.Bowman

As a symmetric space of non-compact type, the Siegel upper half space \mathcal{H}_g is the quotient

:\mathcal{H}_g = \mathrm{Sp}(2g,\mathbb{R})/\mathrm{U}(n),

where we used that \mathrm{U}(n)=\mathrm{Sp}(2g,\mathbb{R})\cap \mathrm{GL}(g,\mathbb{C}) is the maximal torus.

Since the isometry group of a symmetric space G/K is G, we recover that the isometry group of \mathcal{H}_g is \mathrm{Sp}(2g,\mathbb{R}). An isometry acts via a generalized Möbius transformation

:Z\mapsto (AZ+B)(CZ+D)^{-1} \text{ where } Z\in\mathcal{H}_g, \left(\begin{smallmatrix}A&B\\ C&D\end{smallmatrix}\right)\in \mathrm{Sp}_{2g}(\mathbb{R}).

The quotient space \mathcal{H}_g/\mathrm{Sp}(2g,\mathbb{Z}) is the moduli space of principally polarized abelian varieties of dimension g.

See also

References

{{Reflist}}

  • {{Cite web

|last = Bowman

|first = Joshua P.

|title=Some Elementary Results on the Siegel Half-plane

|url= http://pi.math.cornell.edu/~bowman/siegel.pdf

}}.

  • {{Citation

| last=van der Geer

| first=Gerard

| contribution=Siegel modular forms and their applications

| editor-last=Ranestad

| editor-first=Kristian

| title=The 1-2-3 of modular forms

| pages=181–245

| isbn=978-3-540-74117-6

| doi=10.1007/978-3-540-74119-0

| publisher=Springer-Verlag

| location=Berlin

| year=2008

| series=Universitext

| mr=2409679

}}

  • {{cite journal

| last=Nielsen

| first=Frank

| title=The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain

| journal=Entropy

| year=2020

| volume=22

| issue=9

| page=1019

| doi=10.3390/e22091019

| pmid=33286788

| pmc=7597112

| arxiv=2004.08160

| mode=cs2

| doi-access=free

| bibcode=2020Entrp..22.1019N

}}

  • {{Citation | last1=Siegel | first1=Carl Ludwig | author1-link=Carl Ludwig Siegel | title=Einführung in die Theorie der Modulfunktionen n-ten Grades | doi=10.1007/BF01597381 |mr=0001251 | year=1939 | journal=Mathematische Annalen | issn=0025-5831 | volume=116 | pages=617–657| s2cid=124337559 }}

Category:Complex analysis

Category:Automorphic forms

Category:Differential geometry

Category:1939 introductions

{{differential-geometry-stub}}