Sim4Life/SEMCAD
{{Short description|Computer-aided-design software for evaluating electromagnetic devices}}
{{Paid contributions|date=December 2023}}
{{Infobox software
| name = Sim4Life
| logo = Sim4life_logo.png
| developer = ZMT Zurich MedTech AG
| latest_release_version = V8.2.1
| latest_release_date = {{Start date and age|2025|01|23}}
| genre = Computer-aided design
| website = {{URL|http://www.sim4life.swiss}}
}}
Sim4Life (V8.x Web and Desktop) is a computational simulation platform developed by ZMT Zurich MedTech AG (ZMT) in Zurich, Switzerland, in partnership with the Foundation for Research on Information Technologies in Society (IT'IS), with funding from Innosuisse (formerly known as CTI),{{Cite web |date=27 November 2014 |title=Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life) |url=https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397 |access-date=17 March 2024 |website=ARAMIS}}{{Cite web |date=1 June 2015 |title=R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head |url=https://www.aramis.admin.ch/Texte/?ProjectID=34223 |access-date=17 March 2024 |website=ARAMIS}} a Swiss federal funding instrument. The Sim4Life platform is an extension of the SEMCAD X Matterhorn computer-aided-design-based simulation platform marketed by IT’IS partner Schmid and Partner Engineering AG (SPEAG), also based in Zurich. The SEMCAD 3D electromagnetic (EM) simulation software has been used for numerical assessment of EM interference and compatibility (EMI/EMC),{{Cite journal |date=January 2014 |title=A Numerical Study on the Interaction Between Different Position of Cellular Headsets and a Human Head |url=https://journals.riverpublishers.com/index.php/ACES/article/view/11141/9319 |journal= The Applied Computational Electromagnetics Society Journal |volume=29 |issue=1 |pages=91–98 |via=River Publishers |last1=Aminzadeh |first1=R. |last2=Abdolali |first2=A. |last3=Khaligh |first3=H. }} antenna design and optimization,{{Cite journal |date=27 August 2014 |title=Small-size adjustable LTE/WWAN coupled-fed loop antenna for mobile handset applications |url=https://onlinelibrary.wiley.com/doi/full/10.1002/mop.28671 |journal=Microwave and Optical Technology Letters |volume=56 |issue=11 |pages=2687–2691 |doi=10.1002/mop.28671 |via=Wiley Online Library |last1=Chang |first1=Chih-Hua |last2=Huang |first2=Shao-Yu |last3=Wei |first3=Wan-Chu |last4=Ma |first4=Pei-Ji |s2cid=110896209 |url-access=subscription }}{{Cite book |date=23 October 2006 |chapter-url=https://ieeexplore.ieee.org/document/1710997 |doi=10.1109/APS.2006.1710997 |s2cid=44054946 |via=IEEE Xplore |last1=Kin-Lu Wong |last2=Chih-Hsien Wu |last3=Wei-Yu Li |last4=Chih-Ming Su |last5=Shih-Huang Yeh |last6=Chia-Lun Tang |title=2006 IEEE Antennas and Propagation Society International Symposium |chapter=Simplified hand model for the study of hand-held device antenna |pages=2101–2104 |isbn=1-4244-0123-2 }} 5G cellular network research,{{Cite journal |date=29 January 2021 |title=Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design |journal=Scientific Reports |volume=11 |pages=2619 |doi=10.1038/s41598-021-82105-7 |pmid=33514772 |last1=Ramachandran |first1=T. |author2=Faruque MRI |last3=Siddiky |first3=A. M. |last4=Islam |first4=M. T. |issue=1 |pmc=7846749 |bibcode=2021NatSR..11.2619R }} wireless power transfer (WPT),{{Cite journal |date=19 May 2014 |title=Wireless power transfer to deep-tissue microimplants |journal=Proceedings of the National Academy of Sciences |volume=111 |issue=22 |pages=7974–7979 |doi=10.1073/pnas.1403002111 |doi-access=free |last1=Ho |first1=John S. |last2=Yeh |first2=Alexander J. |last3=Neofytou |first3=Evgenios |last4=Kim |first4=Sanghoek |last5=Tanabe |first5=Yuji |last6=Patlolla |first6=Bhagat |last7=Beygui |first7=Ramin E. |last8=Poon |first8=Ada S. Y.|author8-link=Ada Poon |pmid=24843161 |pmc=4050616 |bibcode=2014PNAS..111.7974H }} dosimetry, optics,{{Cite journal |title=Solving diffractive optics problems using graphics processing units |url=https://journals.ssau.ru/vestnik/article/view/957/958 |journal=Aerospace and Mechanical Engineering |date=18 December 2010 |volume=9 |issue=4 |pages=159–168 |via=VESTNIK of the Samara State Aerospace University |last1=Л |first1=Головашкин Д. |last2=Л |first2=Казанский Н. }} high-performance computing (HPC), design of microwave{{Cite journal |date=19 July 2017 |title=Surface Estimation for Microwave Imaging |journal=Sensors |volume=17 |issue=7 |pages=1658 |doi=10.3390/s17071658 |pmid=28753914 |doi-access=free |last1=Kurrant |first1=D. |last2=Bourqui |first2=J. |last3=Fear |first3=E. |pmc=5539471 |bibcode=2017Senso..17.1658. }} and mm-wave waveguide devices, and research on magnetic resonance imaging safety,{{Cite journal |date=14 November 2018 |title=Study on Search Strategies for Assessing the Worst Case RF-Induced Heating for Multi-Configuration Implant System Under MRI |url=https://ieeexplore.ieee.org/document/8534410 |journal=IEEE Transactions on Electromagnetic Compatibility |volume=62 |issue=1 |pages=43–51 |doi=10.1109/TEMC.2018.2879113 |s2cid=116607781 |via=IEEE Xplore |last1=Zheng |first1=Jianfeng |last2=Ji |first2=Xiaohe |last3=Kainz |first3=Wolfgang |last4=Chen |first4=Ji |url-access=subscription }} especially in the context of EM compatibility of implanted medical devices.{{Cite journal |date=1 January 2012 |title=Evaluation of unintended electrical stimulation from MR gradient fields |url=https://www.imrpress.com/journal/FBE/4/5/10.2741/e494 |journal=Frontiers in Bioscience |volume=4 |issue=5 |pages=1731–1742 |doi=10.2741/e494 |via=IMR Press |last1=Bassen |first1=Howard I. |last2=Angelone |first2=L. M. |pmid=22201989 |doi-access=free }}
All of the functions of SEMCAD, which is no longer on the market, are available as part of the Sim4Life platform, which combines the classical technical computer-aided-design tools of SEMCAD with multi-physics solvers, computational human phantoms, medical-image-based modeling, and physiological tissue models. The Sim4Life platform is used in personalized medicine applications for optimization of treatments involving medical devices and the safety of magnetic resonance imaging. Sim4Life has also been used by medical researchers to study non-invasive methods of brain stimulation{{Cite journal |date=23 September 2022 |title=Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study |url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9085 |journal=Journal of Neural Engineering |volume=19 |pages=056020 |via=IOP Publishing}}{{Cite journal |date=2 February 2022 |title=Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation |url=https://www.nature.com/articles/s41598-022-04868-x |journal=Scientific Reports |volume=12 |issue=1 |pages=1763 |via=Nature}} and transcranial focused ultrasound.
Sim4Life.lite is an online version of Sim4Life that is free-of-charge for students for team-learning and online collaboration with classmates and teachers on limited size projects. Sim4Life.lite and Sim4Life.web rely on open-source o²S²PARC technologies, which were developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC) program of the National Institutes of Health Common Fund to enable collaborative, reproducible, and sustainable computational neurosciences.
References
{{reflist}}
External links
- [https://zmt.swiss/ ZMT Zurich MedTech AG website]
- [https://itis.swiss/s/news-events/news/latest-news The Foundation for Research on Information Technologies in Society webpage]
- [https://speag.swiss/products/semcad/overview/ Schmid & Partner Engineering AG website, SEMCAD X Matterhorn webpage]
Category:Computer-aided design software
{{CAD-software-stub}}