Small Veblen ordinal
{{short description|Certain large countable ordinal}}
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by {{harvtxt|Ackermann|1951}} is somewhat smaller than the small Veblen ordinal.
There is no standard notation for ordinals beyond the Feferman–Schütte ordinal . Most systems of notation use symbols such as , , , some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are "collapsing functions".
The small Veblen ordinal or is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted trees {{harv|Jervell|2005}}.
References
{{refbegin}}
- {{citation|mr=0039669 |last=Ackermann|first= Wilhelm |title=Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse
|journal=Math. Z. |volume=53|year=1951|pages= 403–413|doi=10.1007/BF01175640|issue=5|s2cid=119687180}}
- {{citation |chapter-url=http://folk.uio.no/herman/finord.pdf |first=Herman Ruge |last=Jervell |series=Lecture Notes in Computer Science |publisher=Springer |place=Berlin / Heidelberg |volume=3526 |title=New Computational Paradigms |year=2005 |isbn=978-3-540-26179-7 |doi=10.1007/11494645_26 |pages=[https://archive.org/details/newcomputational0000conf/page/211 211–220] |chapter=Finite Trees as Ordinals |url=https://archive.org/details/newcomputational0000conf/page/211 }}
- {{citation|mr=1212407 |last1=Rathjen|first1= Michael|last2= Weiermann|first2= Andreas |title=Proof-theoretic investigations on Kruskal's theorem |journal=Ann. Pure Appl. Logic|volume= 60 |year=1993|issue= 1|pages= 49–88 |url=http://www.amsta.leeds.ac.uk/Pure/staff/rathjen/kruskal.ps |doi=10.1016/0168-0072(93)90192-G|doi-access=free}}
- {{citation |title= Continuous Increasing Functions of Finite and Transfinite Ordinals |first= Oswald |last=Veblen |journal= Transactions of the American Mathematical Society|volume= 9|issue= 3|year= 1908|pages=280–292 |jstor=1988605|doi= 10.2307/1988605|doi-access=free}}
- {{cite arXiv |last=Weaver|first=Nik|eprint=math/0509244|title=Predicativity beyond Gamma_0|year=2005 |mode=cs2}}
{{refend}}
{{countable ordinals}}
{{settheory-stub}}
{{number-stub}}