Small stellated 120-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Small stellated 120-cell

bgcolor=#ffffff align=center colspan=2|280px
Orthogonal projection
bgcolor=#e7dcc3|TypeSchläfli-Hess polytope
bgcolor=#e7dcc3|Cells120 {5/2,5}
bgcolor=#e7dcc3|Faces720 {5/2}
bgcolor=#e7dcc3|Edges1200
bgcolor=#e7dcc3|Vertices120
bgcolor=#e7dcc3|Vertex figure{5,3}
bgcolor=#e7dcc3|Schläfli symbol{5/2,5,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|node_1|5|rat|d2|node|5|node|3|node}}
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5]
bgcolor=#e7dcc3|DualIcosahedral 120-cell
bgcolor=#e7dcc3|PropertiesRegular

In geometry, the small stellated 120-cell or stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,3}. It is one of 10 regular Schläfli-Hess polytopes.

Related polytopes

It has the same edge arrangement as the great grand 120-cell, and also shares its 120 vertices with the 600-cell and eight other regular star 4-polytopes. It may also be seen as the first stellation of the 120-cell. In this sense it could be seen as analogous to the three-dimensional small stellated dodecahedron, which is the first stellation of the dodecahedron.{{cite journal

| last1 = Conrad | first1 = J.

| last2 = Chamberland | first2 = C.

| last3 = Breuckmann | first3 = N. P.

| last4 = Terhal | first4 = B. M.

| journal = Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

| volume = 376 | issue = 2123 | language = en

| issn = 1364-503X

| year = 2018

| pages = 20170323

| doi = 10.1098/rsta.2017.0323

| title = The small stellated dodecahedron code and friends

| pmid = 29807900

| pmc = 5990658

| bibcode = 2018RSPTA.37670323C

}} Indeed, the small stellated 120-cell is dual to the icosahedral 120-cell, which could be taken as a 4D analogue of the great dodecahedron, dual of the small stellated dodecahedron.

The edges of the small stellated 120-cell are τ2 as long as those of the 120-cell core inside the 4-polytope.

class="wikitable" width=600

|+ Orthographic projections by Coxeter planes

align=center

!H3

!A2 / B3 / D4

!A3 / B2

align=center

|200px

|200px

|200px

See also

References

{{Reflist}}

  • Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder [http://www.hti.umich.edu/cgi/b/bib/bibperm?q1=ABN8623.0001.001].
  • H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 26, Regular Star-polytopes, pp. 404–408)
  • {{KlitzingPolytopes|polychora.htm|4D uniform polytopes (polychora)|o3o5o5/2x - sishi}}