Snub dodecadodecahedron

{{Short description|Uniform star polyhedron with 84 faces}}

{{Uniform polyhedra db|Uniform polyhedron stat table|Siddid}}

File:Snub dodecadodecahedron.stl

In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as {{math|U{{sub|40}}}}. It has 84 faces (60 triangles, 12 pentagons, and 12 pentagrams), 150 edges, and 60 vertices.{{Cite web|url=https://www.mathconsult.ch/static/unipoly/40.html|title=40: snub dodecadodecahedron|last=Maeder|first=Roman|date=|website=MathConsult|archive-url=|archive-date=|access-date=}} It is given a Schläfli symbol {{math|sr{{{frac|5|2}},5},}} as a snub great dodecahedron.

Cartesian coordinates

Let \xi\approx 1.2223809502469911 be the smallest real zero of the polynomial P=2x^4-5x^3+3x+1. Denote by \phi the golden ratio. Let the point p be given by

:p=

\begin{pmatrix}

\phi^{-2}\xi^2-\phi^{-2}\xi+\phi^{-1}\\

-\phi^{2}\xi^2+\phi^{2}\xi+\phi\\

\xi^2+\xi

\end{pmatrix}

.

Let the matrix M be given by

:M=

\begin{pmatrix}

1/2 & -\phi/2 & 1/(2\phi) \\

\phi/2 & 1/(2\phi) & -1/2 \\

1/(2\phi) & 1/2 & \phi/2

\end{pmatrix}

.

M is the rotation around the axis (1, 0, \phi) by an angle of 2\pi/5, counterclockwise. Let the linear transformations T_0, \ldots, T_{11}

be the transformations which send a point (x, y, z) to the even permutations of (\pm x, \pm y, \pm z) with an even number of minus signs.

The transformations T_i constitute the group of rotational symmetries of a regular tetrahedron.

The transformations T_i M^j (i = 0,\ldots, 11, j = 0,\ldots, 4) constitute the group of rotational symmetries of a regular icosahedron.

Then the 60 points T_i M^j p are the vertices of a snub dodecadodecahedron. The edge length equals 2(\xi+1)\sqrt{\xi^2-\xi}, the circumradius equals (\xi+1)\sqrt{2\xi^2-\xi}, and the midradius equals \xi^2+\xi.

For a great snub icosidodecahedron whose edge length is 1,

the circumradius is

:R = \frac12\sqrt{\frac{2\xi-1}{\xi-1}} \approx 1.2744398820380232

Its midradius is

:r=\frac{1}{2}\sqrt{\frac{\xi}{\xi-1}} \approx 1.1722614951149297

The other real root of P plays a similar role in the description of the Inverted snub dodecadodecahedron

Related polyhedra

= Medial pentagonal hexecontahedron =

{{Uniform polyhedra db|Uniform dual polyhedron stat table|Siddid}}

File:Medial pentagonal hexecontahedron.stl

The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

See also

References

{{Reflist}}

  • {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 |mr=730208 | year=1983 | doi=10.1017/CBO9780511569371}}