Sodium bismuth titanate
Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure.
Synthesis
Structure
{{main|Perovskite (structure)}}
The exact room-temperature crystal structure of sodium bismuth titanate has been a matter of debate for several years. Early studies in the 1960s using X-ray diffraction suggested Na0.5Bi0.5TiO3 to adopt either a pseudo-cubic or a rhombohedral crystal structure.{{cite journal|author1=Smolenskii, G. |author2=Isupov, V. |author3=Agranovskaya, A. |author4=Krainik, N. | title =New ferroelectrics of complex composition. | journal =Sov. Phys. Solid State |year =1961| volume = 2 | pages =2651–2654}} In 2010, based on the high-resolution single-crystal X-ray diffraction data, a monoclinic structure (space group Cc) was proposed. On heating, Na0.5Bi0.5TiO3 transforms at 533 ± 5 K to a tetragonal structure (space group P4bm) and above 793 ± 5 K to cubic structure (space group Pm{{overline|3}}m).{{cite journal|author1=Zvirgzds, J.A. |author2=Kapostin, P.P. |author3=Zvirgzde, J.V. |author4=Kruzina, T.V. | title =X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3| journal =Ferroelectrics |year =1982 | volume =40|issue=1 | pages = 75–77|doi=10.1080/00150198208210600 |bibcode=1982Fer....40...75Z }}
Physical properties
Na0.5Bi0.5TiO3 is a relaxor ferroelectric. Its optical band gap was reported to be in the 3.0–3.5 eV.{{cite journal|author1=Bousquet, M. |author2=Duclere, J.R. |author3=Orhan, E. |author4=Boulle, A. |author5=Bachelet, C. |author6=Champeaux, C | title = Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation: Experimental approach and density functional theory calculations| volume = 107| pages = 104107–104107–13| journal = J. Appl. Phys.|year = 2010|issue=10 |doi=10.1063/1.3400095|bibcode=2010JAP...107j4107B }}
Applications
{{main|Piezoelectricity}}
Various solid solutions with tetragonal ferroelectric perovskites including BaTiO3,{{cite journal|author1=Takenaka, T. |author2=Maruyama, K.-I. |author3=Sakata, K. | title = (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics.| volume = 30| pages = 2236–2239| journal = Jpn. J. Appl. Phys. Part 1|year = 1991|issue=9S |doi=10.1143/JJAP.30.2236|bibcode=1991JaJAP..30.2236T |s2cid=124093028 }} Bi0.5K0.5TiO3Sasaki, A.; Chiba, T.; Mamiya, Y.; Otsuki, E. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. Part 1 1999, 38, 5564–5567. have been developed to obtain morphotropic phase boundaries to enhance the piezoelectric properties of Na0.5Bi0.5TiO3. The extraordinarily large strain generated by a field-induced phase transition in sodium bismuth titanate-based solid solutions prompted researchers to investigate its potential as an alternative to lead zirconate titanate for actuator applications.{{cite journal|author1=Reichmann, K. |author2=Feteira, A., Li M. | title = Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators| volume = 8| pages = 8467–8495| journal = Materials|year = 2015|issue=12 |doi=10.3390/ma8125469|pmid=28793724 |pmc = 5458809|bibcode=2015Mate....8.8467R |doi-access=free }}
References
{{reflist|30em}}
Further reading
- Lead-Free Piezoelectrics, Ed. Shashank Priya and Sahn Nahm,(2012), Springer-Verlag, New York. {{doi|10.1007/978-1-4419-9598-8}}.
{{sodium compounds}}
{{Bismuth compounds}}
{{Titanium compounds}}
{{DEFAULTSORT:Sodium Bismuth titanate}}
Category:Piezoelectric materials