Sodium bismuth titanate

Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure.

Synthesis

Na0.5Bi0.5TiO3 is not a naturally occurring mineral and several synthesis routes to obtain the compound have been developed. It can be easily prepared by solid state reaction between Na2CO3, Bi2O3 and TiO2 at temperatures around 850 °C.

Structure

{{main|Perovskite (structure)}}

The exact room-temperature crystal structure of sodium bismuth titanate has been a matter of debate for several years. Early studies in the 1960s using X-ray diffraction suggested Na0.5Bi0.5TiO3 to adopt either a pseudo-cubic or a rhombohedral crystal structure.{{cite journal|author1=Smolenskii, G. |author2=Isupov, V. |author3=Agranovskaya, A. |author4=Krainik, N. | title =New ferroelectrics of complex composition. | journal =Sov. Phys. Solid State |year =1961| volume = 2 | pages =2651–2654}} In 2010, based on the high-resolution single-crystal X-ray diffraction data, a monoclinic structure (space group Cc) was proposed. On heating, Na0.5Bi0.5TiO3 transforms at 533 ± 5 K to a tetragonal structure (space group P4bm) and above 793 ± 5 K to cubic structure (space group Pm{{overline|3}}m).{{cite journal|author1=Zvirgzds, J.A. |author2=Kapostin, P.P. |author3=Zvirgzde, J.V. |author4=Kruzina, T.V. | title =X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3| journal =Ferroelectrics |year =1982 | volume =40|issue=1 | pages = 75–77|doi=10.1080/00150198208210600 |bibcode=1982Fer....40...75Z }}

Physical properties

Na0.5Bi0.5TiO3 is a relaxor ferroelectric. Its optical band gap was reported to be in the 3.0–3.5 eV.{{cite journal|author1=Bousquet, M. |author2=Duclere, J.R. |author3=Orhan, E. |author4=Boulle, A. |author5=Bachelet, C. |author6=Champeaux, C | title = Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation: Experimental approach and density functional theory calculations| volume = 107| pages = 104107–104107–13| journal = J. Appl. Phys.|year = 2010|issue=10 |doi=10.1063/1.3400095|bibcode=2010JAP...107j4107B }}

Applications

{{main|Piezoelectricity}}

Various solid solutions with tetragonal ferroelectric perovskites including BaTiO3,{{cite journal|author1=Takenaka, T. |author2=Maruyama, K.-I. |author3=Sakata, K. | title = (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics.| volume = 30| pages = 2236–2239| journal = Jpn. J. Appl. Phys. Part 1|year = 1991|issue=9S |doi=10.1143/JJAP.30.2236|bibcode=1991JaJAP..30.2236T |s2cid=124093028 }} Bi0.5K0.5TiO3Sasaki, A.; Chiba, T.; Mamiya, Y.; Otsuki, E. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. Part 1 1999, 38, 5564–5567. have been developed to obtain morphotropic phase boundaries to enhance the piezoelectric properties of Na0.5Bi0.5TiO3. The extraordinarily large strain generated by a field-induced phase transition in sodium bismuth titanate-based solid solutions prompted researchers to investigate its potential as an alternative to lead zirconate titanate for actuator applications.{{cite journal|author1=Reichmann, K. |author2=Feteira, A., Li M. | title = Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators| volume = 8| pages = 8467–8495| journal = Materials|year = 2015|issue=12 |doi=10.3390/ma8125469|pmid=28793724 |pmc = 5458809|bibcode=2015Mate....8.8467R |doi-access=free }}

References

{{reflist|30em}}

Further reading

  • Lead-Free Piezoelectrics, Ed. Shashank Priya and Sahn Nahm,(2012), Springer-Verlag, New York. {{doi|10.1007/978-1-4419-9598-8}}.

{{sodium compounds}}

{{Bismuth compounds}}

{{Titanium compounds}}

{{DEFAULTSORT:Sodium Bismuth titanate}}

Category:Titanates

Category:Bismuth compounds

Category:Ceramic materials

Category:Piezoelectric materials

Category:Ferroelectric materials

Category:Perovskites

Category:Sodium compounds