Solar power in Germany

{{Short description|None}}

{{Use dmy dates|date=January 2023}}

{{Use British English|date=January 2023}}

{{Infobox country solar power|country=Germany|capacity=90|most_recent_year=2024|generation=71|most_recent_year_generation=2024|capacity_capita=1069|most_recent_year_capita=2024|share=15%|most_recent_year_share=2024|rank=6|most_recent_year_rank=2024}}

{{Current German electricity by source}}

Solar power accounted for an estimated 15% of electricity production in Germany in 2024, up from 1.9% in 2010 and less than 0.1% in 2000.{{cite web|url=https://ourworldindata.org/grapher/share-electricity-solar?tab=chart&country=~DEU |title=Share of electricity generated by solar power: Germany|page=|author=|publisher=Our World In Data|date=2024-06-20|access-date=2024-09-18}}{{cite web|work=Fraunhofer ISE|url=https://www.energy-charts.de/energy_pie.htm|title=Recent facts about photovoltaics in Germany|date=19 May 2015|access-date=3 July 2015}}{{cite web|title=Electricity production from solar and wind in Germany in 2014|url=http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/data-nivc-/electricity-production-from-solar-and-wind-in-germany-2014.pdf |publisher=Fraunhofer Institute for Solar Energy Systems ISE|place=Germany|access-date=22 July 2014|archive-url= https://web.archive.org/web/20140728200112/http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/data-nivc-/electricity-production-from-solar-and-wind-in-germany-2014.pdf |archive-date=28 July 2014|page=5|date=21 July 2014|url-status=live}}

Germany has been among the world's top PV installer for several years, with total installed capacity amounting to 81.8 gigawatts (GW) at the end of 2023.{{cite web|url=https://taiyangnews.info/germanys-official-2023-solar-installations-exceed-14-gw/ |title=Germany’s Official 2023 Solar Installations Exceed 14 GW|page=|author=Anu Bhambhani|publisher=Taiyang News|date=2024-01-22|access-date=2024-01-27}} Germany's 974 watts of solar PV per capita (2023) is the third highest in the world, behind only Australia and the Netherlands.{{cite web|url=https://iea-pvps.org/wp-content/uploads/2024/04/Snapshot-of-Global-PV-Markets_20241.pdf|title=Snapshot of Global PV Markets 2024|page=7/25|author=|publisher=International Energy Agency|date=April 2024|access-date=2024-09-18}} Germany's official government plans are to continuously increase renewables' contribution to the country's overall electricity consumption; current targets are 80% renewable electricity by 2030 and full decarbonization before 2040.{{cite web|url=https://www.cleanenergywire.org/factsheets/germanys-greenhouse-gas-emissions-and-climate-targets |title=Germany’s greenhouse gas emissions and energy transition targets|page=|author=Kerstine Appunn, Freja Eriksen, Julian Wettengel|publisher=Clean Energy Wire|date=2024-09-11|access-date=2024-09-18}}

Concentrated solar power (CSP), a solar power technology that does not use photovoltaics, has virtually no significance for Germany, as this technology demands much higher solar insolation. There is, however, a 1.5{{nbsp}}MW experimental CSP-plant used for on-site engineering purposes rather than for commercial electricity generation, the Jülich Solar Tower owned by the German Aerospace Center. Germany's largest solar farms are located in Meuro, Neuhardenberg, and Templin with capacities over 100 MW.

According to the Fraunhofer Institute for Solar Energy Systems, in 2022, Germany generated 60.8 TWh from solar power, or 11% of Germany's gross electricity consumption.{{Cite journal| last = Wirth| first = Harry| last2 = Ise| first2 = Fraunhofer| title = Recent Facts about Photovoltaics in Germany |date= November 21, 2023 |work=Fraunhofer Institute for Solar Energy Systems |location=Freiburg|url=https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/recent-facts-about-photovoltaics-in-germany.pdf |access-date=4 January 2023 |pages=99}}{{rp|6}}

The country is increasingly producing more electricity at specific times with high solar irradiation than it needs, driving down spot-market prices{{cite web|url=http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/news/electricity-prices-and-production-data-2013.pdf |title=Electricity Spot-Prices and Production Data in Germany 2013|website=fraunhofer.de}} and exporting its surplus of electricity to its neighbouring countries, with a record exported surplus of 34 TWh in 2014.{{cite web|title=Electricity production from solar and wind in Germany in 2014 (German version)|url=http://www.ise.fraunhofer.de/de/downloads/pdf-files/data-nivc-/stromproduktion-aus-solar-und-windenergie-2014.pdf |publisher=Fraunhofer Institute for Solar Energy Systems ISE|place=Germany|access-date=5 January 2015|pages=2, 3, 6|date=5 January 2015}}

A decline in spot-prices may however raise the electricity prices for retail customers, as the spread of the guaranteed feed-in tariff and spot-price increases as well.{{rp|17}}

As the combined share of fluctuating wind and solar is approaching 17 per cent on the national electricity mix,{{Citation needed|reason=This figure is out of date|date=April 2022}} other issues are becoming more pressing and others more feasible. These include adapting the electrical grid, constructing new grid-storage capacity, dismantling and altering fossil and nuclear power plants and to construct a new generation of combined heat and power plants.{{rp|7}}

History

{{thumb

|align=right

|width = 275

|pos=bottom

|content=

Price of solar PV systems

{{Graph:Chart

| xAxisTitle = Year

| xAxisAngle = -40

| x = 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015

| yAxisTitle = Price (€/kW)

| y = 5000, 4568, 4354, 4110, 3040, 2480, 1990, 1520, 1420, 1240

| showSymbols = |yGrid=

}}

|caption = History of PV roof-top prices in euro per kilowatt (€/kW)Average turn-key prices for roof-top PV systems up to 100 kWp. Sources: for data since 2009 [http://www.photovoltaik-guide.de/pv-preisindex photovoltaik-guide.de, pv-preisindex], using for each year average price of month of January. Data source for previous years (2006–2008), see [http://www.solarwirtschaft.de/fileadmin/content_files/Faktenblatt_PV_Okt09.pdf Bundesverband Solarwirtschaft e.V. (BSW-Solar), September 2009, page 4], quarterly figures from EUPD-Research.

}}

During the Reagan administration in the United States, oil prices decreased and the US removed most of its policies that supported its solar industry.{{Cite book |last=Lan |first=Xiaohuan |title=How China Works: An Introduction to China's State-led Economic Development |publisher=Palgrave Macmillan |year=2024 |isbn=978-981-97-0079-0 |translator-last=Topp |translator-first=Gary |doi=10.1007/978-981-97-0080-6}}{{Rp|page=143}} Government subsidies were higher in Germany (as well as Japan), which prompted the solar industry supply chain to begin moving from the US to those countries.{{Rp|page=143}}

Germany was one of the first countries to deploy grid-scale PV power.

In 2004, Germany was the first country, together with Japan, to reach 1 GW of cumulative installed PV capacity.

Since 2004 solar power in Germany has been growing considerably due to the country's feed-in tariffs for renewable energy, which were introduced by the German Renewable Energy Sources Act, and declining PV costs.

Prices of PV systems/solar power system decreased more than 50% in the 5 years since 2006.{{cite web|url=http://www.solarwirtschaft.de/fileadmin/content_files/BSW_Solar_Fakten_PV_1110.pdf |title=BSW-Solar – Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik), Oct 2011|website=solarwirtschaft.de}}

By 2011, solar PV provided 18 TWh of Germany's electricity, or about 3% of the total.

That year the federal government set a target of 66 GW of installed solar PV capacity by 2030,{{cite web|url=http://www.nuwireinvestor.com/articles/germany-reducing-incentives-for-solar-property-investment-55078.aspx |title=Germany Reducing Incentives For Solar Property Investment|author=Property Wire|date=22 April 2010|publisher=NuWire Investor|access-date=10 September 2010}}

to be reached with an annual increase of 2.5–3.5 GW,{{cite web|url=http://www.germanenergyblog.de/?p=8341 |title=New German 7.5 GWp PV Record by End of 2011|last=Lang|first=Matthias |date=21 November 2011|work=German Energy Blog|access-date=9 January 2012}} and a goal of 80% of electricity from renewable sources by 2050.[http://www.summitwatch.org/de.html Germany]

More than 7 GW of PV capacity were installed annually during the record years of 2010, 2011 and 2012.

For this period, the installed capacity of 22.5 GW represented almost 30% of the worldwide deployed photovoltaics.

Since 2013, the number of new installations declined significantly due to more restrictive governmental policies.

About 1.5 million photovoltaic systems were installed around the country in 2014, ranging from small rooftop systems, to medium commercial and large utility-scale solar parks.{{rp|5}}

It's estimated that by 2017 over 70% of the country's jobs in the solar industry have been lost in the solar sector in recent years.{{cite web|url=https://1-stromvergleich.com/solar-power-germany// |title=GERMANY: SOLAR POWER FACTSHEET 2016 |publisher=Strom-Report}} Proponents from the PV industry blame the lack of governmental commitment, while others point out the financial burden associated with the fast-paced roll-out of photovoltaics, rendering the transition to renewable energies unsustainable in their view.{{cite web |url= https://af.reuters.com/article/commoditiesNews/idAFL6E7NT1WK20111229?sp=true |archive-url= https://web.archive.org/web/20120413214942/http://af.reuters.com/article/commoditiesNews/idAFL6E7NT1WK20111229?sp=true |url-status= dead |archive-date= 13 April 2012 |title= German solar power output up 60 pct in 2011 |date=29 December 2011 |work=Reuters |access-date=2 January 2012 }}

A boom in small, residential balcony-mounted solar systems has been reported in the early 2020s.{{cite web|url=https://aussiedlerbote.de/en/balcony-power-plants-cause-solar-industry-to-boom/ |title=Balcony power plants cause solar industry to boom|author=Alex Stellmacher|page=|publisher=ASB Zeitung|date=2024-01-02|access-date=2024-01-27}}{{cite web|url=https://cybernews.com/tech/germany-balcony-solar-craze/ |title=Germany's balcony solar craze: is US next?|author=Ernestas Naprys|page=|publisher=Cybernews.com|date=2023-11-15|access-date=2024-01-27}}{{cite web|url=https://www.dw.com/en/mini-plug-in-solar-panels-are-they-worth-it/a-66240262 |title=Mini plug-in solar panels: Are they worth it?|author=Gero Rueter|page=|publisher=Deutsche Welle|date=2023-11-09|access-date=2024-01-27}}

Governmental policies

{{further|Feed-in tariffs in Germany|German Renewable Energy Sources Act}}

{{Image frame

|width = 355

|align=right

|pos=bottom

|content=

Feed-in tariff for rooftop solar{{cite web |publisher=IEA-PVPS |url=http://www.iea-pvps.org/index.php?id=6 |title=Annual Report 2015 |page=63 |date=13 May 2016}}

{{ Graph:Chart

|type=rect

|width=300

|y = 50.6 , 48.1 , 45.7 , 57.4 , 54.5 , 51.8 , 49.2 , 46.75 , 43.01 , 39.14 , 28.74 , 24.43 , 17.02 , 13.68 , 12.56 , 12.31

|yAxisTitle = Tariff (€/kW)

|xAxisTitle = Year

|x = 2001 , 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015

|xAxisAngle = -40 |yGrid=

}}

|caption = History of German feed-in tariffs in ¢/kWh for rooftop solar of less than 10 kWp since 2001. For 2016, it amounted to 12.31 ¢/kWh.

}}

Germany introduced its feed-in tariff in 2000 and it later became a model for solar industry policy support in other countries.{{Rp|page=145}}

{{As of|2012}}, the feed-in tariff costs about €14 billion (US$18 billion) per year for wind and solar installations.

The cost is spread across all rate-payers in a surcharge of 3.6 €ct (4.6 ¢) per kWh{{cite web |url= http://www.germanenergyblog.de/?p=7526 |title=2012 EEG Surcharge Increases Slightly to 3.592 ct/kWh |first= Matthias |last= Lang |publisher=German Energy Blog |date=14 October 2011 |access-date= 9 January 2012}} (approximately 15% of the total domestic cost of electricity).{{cite web|url=http://www.energy.eu/#Domestic-Elec |title=Europe's Energy Portal » Fuel, Natural Gas and Electricity Prices From Past to Present}}

On the other hand, as expensive peak power plants are displaced, the price at the power exchange is reduced due to the so-called merit order effect.{{cite web |url= http://www.renewablesinternational.net/merit-order-effect-of-pv-in-germany/150/510/33011/ |title= Merit order effect of PV in Germany |date= 2 February 2012 |first= Craig |last= Morris |work= Renewables International |access-date= 17 May 2012 }}

Germany set a world record for solar power production with 25.8 GW produced at midday on 20 and 21 April 2015.{{cite web|url=http://www.eex-transparency.com/homepage/power/germany/production/usage/actual-solar-power-generation-/actual-solar-power-generation-chart- |title=Transparency in Energy Markets{{Snd}} Germany}}

According to the solar power industry, a feed-in tariff is the most effective means of developing solar power.{{cite web|url=http://www.pennenergy.com/index/power/display/1469629556/articles/power-engineering/volume-114/issue-10/departments/View-on-Renewables/the-us-needs-a-feed-in-tariff.html |title=The U.S. Needs a Feed-in Tariff|website=pennenergy.com}} It is the same as a power purchase agreement, but is at a much higher rate. As the industry matures, it is reduced and becomes the same as a power purchase agreement. A feed-in tariff allows investors a guaranteed return on investment{{Snd}} a requirement for development. A primary difference between a tax credit and a feed-in tariff is that the cost is borne the year of installation with a tax credit, and is spread out over many years with a feed-in tariff. In both cases the incentive cost is distributed over all consumers. This means that the initial cost is very low for a feed-in tariff and very high for a tax credit. In both cases the learning curve reduces the cost of installation, but is not a large contribution to growth, as grid parity is still always reached.{{cite web|url=http://www.q-cells.com/uploads/tx_abdownloads/files/Preprint_26thEUPVSEC_6CV-1-63_FKersten.pdf |title=PV Learning Curves:Past and Future Drivers of Cost Reduction|website=q-cells.com}}

Since the end of the boom period, national PV market has since declined significantly, due to the amendments in the German Renewable Energy Sources Act (EEG) that reduced feed-in tariffs and set constraints on utility-scaled installations, limiting their size to no more than 10 kW.{{cite web|title=Changes for solar in Germany|url=http://www.renewablesinternational.net/changes-for-solar-in-germany/150/452/77990/ |publisher=renewablesinternational.net |access-date=12 May 2014 |archive-url=https://web.archive.org/web/20140512222547/http://www.renewablesinternational.net/changes-for-solar-in-germany/150/452/77990/ |archive-date=12 May 2014 |url-status=dead|date=3 April 2014}}

The previous version of the EEG only guaranteed financial assistance as long as the PV capacity had not yet reached 52 GW. This limit has now been removed. It also foresees to regulate annual PV growth within a range of 2.5 GW to 3.5 GW by adjusting the guaranteed fees accordingly. The legislative reforms stipulates a 40 to 45 per cent share from renewable energy sources by 2025 and a 55 to 60 per cent share by 2035.{{cite web|url=http://www.bmwi.de/DE/Themen/Energie/Erneuerbare-Energien/eeg-reform.html |title=Erneuerbare Energien|first=Bundesministerium für Wirtschaft und|last=Energie|website=bmwi.de}}

{{as of|November 2016}}, tenants in North Rhine-Westphalia (NRW) will soon be able to benefit from the PV panels mounted on the buildings in which they live.

The state government has introduced measures covering the self-consumption of power, allowing tenants to acquire the electricity generated onsite more cheaply than their regular utility contracts stipulate.{{cite news| title = Federal state supports 'tenant electricity' models with solar PV | date = 1 November 2016 | work = Clean Energy Wire (CLEW) | location = Berlin, Germany | url = https://www.cleanenergywire.org/news/no-climate-plan-ahead-cop22-power-origin-transparency/federal-state-supports-tenant-electricity-models-solar-pv | access-date = 1 November 2016}}{{cite press release | author = | title = Minister Remmel: "NRW macht es vor — Mieterinnen und Mieter können künftig auch von der Energiewende profitieren." — Umweltministerium fördert Mieterstrom-Modelle und Energiespeicher | trans-title = Minister Remmel: "NRW makes it possible — tenants can also benefit from the Energiewende in the future." — Environment Ministry promotes tenant electricity models and energy storage

| language = de | date = 31 October 2016 | publisher = Umweltministerium North Rhine-Westphalia | location = Düsseldorf, Germany | url = https://www.umwelt.nrw.de/presse/detail/news/2016-10-31-umweltministerium-foerdert-mieterstrom-modelle-und-energiespeicher/ | access-date = 1 November 2016}}{{Needs update|date=October 2024}}

Germany subsidizes the installation of solar capacity.{{Rp|page=145}}

= Grid capacity and stability issues =

File:Germany Electricity Generation 5-25-26-2012.png

{{Confusing|section|date=July 2014}}

In 2017, approximately 9 GW of photovoltaic plants in Germany were being retrofitted to shut down{{cite web|last1=Lang|first1=Matthias |title=Study Recommends Retrofitting of PV Power Plants to Solve 50.2 Hz Problem|url=http://www.germanenergyblog.de/?p=7313 |website=German Energy Blog|date=21 September 2011 |access-date=15 February 2017}} if the frequency increases to 50.2 Hz, indicating an excess of electricity on the grid. The frequency is unlikely to reach 50.2 Hz during normal operation, but can if Germany is exporting power to countries that suddenly experience a power failure. This leads to a surplus of generation in Germany, that is transferred to rotating load and generation, which causes system frequency to rise. This happened in 2003 and 2006.[http://www.rpia.ro/?page_id=1668 The "50.2 Hz" problem for photovoltaic power plants] {{webarchive |url=https://web.archive.org/web/20120623061220/http://www.rpia.ro/?page_id=1668 |date=23 June 2012 }}{{cite web|url=http://www.mainsfrequency.com/verlauf_en.htm |title=Timeline of the utility frequency: Timeline}}{{cite web|url=http://www.ecofys.com/files/files/ecofys_ifk_2011_50_2_hz_summary.pdf |title=Impact of Large-scale Distributed Generation on Network Stability During Over-Frequency Events & Development of Mitigation Measures|website=ecofys.com}} However, power failures could not have been caused by photovoltaics in 2006, as solar PV played a negligible role in the German energy mix at that time.

{{cite web

|author=Michael Döring

|title=Dealing with the 50.2 Hz problem

|url=http://www.modernpowersystems.com/features/featuredealing-with-the-50.2-hz-problem

|date=1 January 2013

|access-date=13 July 2014

|archive-url=https://web.archive.org/web/20140714151720/http://www.modernpowersystems.com/features/featuredealing-with-the-50.2-hz-problem/

|archive-date=14 July 2014

|url-status=live

}}

In December 2012, the president of Germany's "Bundesnetzagentur", the Federal Network Agency, stated that there is "no indication", that the switch to renewables is causing more power outages.

{{cite web

|title=Germany's Network Agency says power outages "unlikely"

|url=http://www.renewablesinternational.net/germanys-network-agency-says-power-outages-unlikely/150/537/59139

|date=6 December 2012 |access-date=13 July 2014

|archive-url=https://web.archive.org/web/20140714140111/http://www.renewablesinternational.net/germanys-network-agency-says-power-outages-unlikely/150/537/59139/

|archive-date=14 July 2014

|url-status=live

}} Amory Lovins from the Rocky Mountain Institute wrote about the German Energiewende in 2013, calling the discussion about grid stability a "disinformation campaign".

{{cite web

|author=Amory Lovins

|title=Separating Fact from Fiction in Accounts of Germany's Renewables Revolution

|url=http://energytransition.de/2013/08/energiewende-separating-fact-from-fiction

|archive-url=https://web.archive.org/web/20140714182245/http://energytransition.de/2013/08/energiewende-separating-fact-from-fiction/

|archive-date=14 July 2014

|date=23 August 2013

|url-status=live

}}

Potential

File:Germany GHI Solar-resource-map GlobalSolarAtlas World-Bank-Esmap-Solargis.png]]

Germany has about the same solar potential as Alaska, which has an average of 3.08 sun hours/day in Fairbanks.{{Citation needed|date=October 2020}}

{{div flex row}}

Bremen Sun Hours/day (Avg = 2.92 hrs/day)

{{Graph:Chart

|type=rect

|width=350 |height=150

|xAxisAngle=-40

|xAxisTitle=Month

|x=Jan , Feb , Mar , Apr , May , Jun , Jul , Aug , Sep , Oct , Nov , Dec

|yAxisTitle=Hours

|y=0.80, 1.65, 2.43, 4.26, 5.16, 5.08, 4.85, 4.39, 2.96, 1.83, 1.08, 0.56

|showValues=offset:4

}}

Stuttgart Sun Hours/day (Avg = 3.33 hrs/day)

{{Graph:Chart

|type=rect

|width=350 |height=150

|xAxisAngle=-40

|xAxisTitle=Month

|x=Jan , Feb , Mar , Apr , May , Jun , Jul , Aug , Sep , Oct , Nov , Dec

|yAxisTitle=Hours

|y=1.07, 2.02, 3.10, 4.22, 4.77, 4.92, 5.84, 5.31, 3.95, 2.40, 1.37, 0.96

|showValues=offset:4

}}

Source: NREL, based on an average of 30 years of weather data.{{cite web|url=http://pvwatts.nrel.gov/pvwatts.php |title=PV Watts|publisher=NREL|access-date=1 July 2016}}

{{Div flex row end}}

Statistics

File:Levelized cost of electricity Germany 2018 ISE.png

The history of Germany's installed photovoltaic capacity, its average power output, produced electricity, and its share in the overall consumed electricity, showed a steady, exponential growth for more than two decades up to about 2012. {{Dubious |Statistics|date=January 2020}}

Solar PV capacity doubled on average every 18 months in this period; an annual growth rate of more than 50 per cent.

Since about 2012 growth has slowed down significantly.

=Generation=

class="wikitable" style="text-align: right;"

!Year

!Capacity
(MW)

!Net annual
generation
(GWh)

!% of gross
electricity
consumption

!Capacity
Factor (%)

1990212e-045.7
1991212e-045.7
1992647e-047.6
1993936e-043.8
19941270.0016.7
19951870.0014.4
199628120.0024.9
199742180.0034.9
199854350.0067.4
199970300.0054.9
2000114600.016.0
2001176760.0134.9
20022961620.0286.2
20034353130.0528.2
200411055570.0915.8
2005205612820.217.1
2006289922200.368.7
2007417030750.498.4
2008612044200.728.2
20091056665831.137.1
201018006117291.97.4
201125916195993.238.6
201234077262204.358.8
201336710300205.139.6
201437900347356.0810.9
201539224373306.511.3
201640679368206.410.7
201742293380016.610.6
201845158434517.711.6
201948864443348.211.1
202054403485258.910.1
202160108483738.79.1
2022673995959611.110.1
2023830006357612.4

Source: Federal Ministry for Economic Affairs and Energy, for capacity figures{{ cite web|author=Bundesministerium für Wirtschaft und Energie|url=https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html |title=Time series for the development of renewable energy sources in Germany |access-date=14 May 2022|format=xls }}{{rp|7|accessdate=14 May 2019}} and other figures.{{rp|16–41}}

Note: This table does not show net consumption but gross electricity consumption, which includes self-consumption of nuclear and coal-fire power plants. In 2014, net consumption stood at about 6.9% (vs. 6.1% for gross consumption).{{rp|5}}

{{Image frame

|align=right

|width=500

|content=

{{ Graph:Chart | type=rect

| width = 400

| height = 250

| yAxisTitle = Nationwide PV capacity (MW)

| showValues = offset:4

| y = 2 , 2 , 6 , 9 , 12 , 18 , 28 , 42 , 54 , 70 , 114 , 176 , 296 , 435 , 1105 , 2056 , 2899 , 4170 , 6120 , 10566 , 18006 , 25916 , 34077 , 36710 , 37900 , 39224 , 40679 , 42293 , 45158 , 48914 , 53721 , 58728

| xAxisTitle = Year

| xAxisAngle = -60

| x = 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021

}}

|caption=Nationwide PV capacity in megawatts on a linear scale since 1990.
Source: Federal Ministry for Economic Affairs and Energy{{rp|7}}

}}

= Solar PV by type =

class="wikitable"

|+Installed PV capacity in Germany by class size 2017{{Cite web|url=https://www.pvp4grid.eu/wp-content/uploads/2018/12/D2.1_Existing-future-prosumer-concepts_PVP4G-1.pdf |title=EXISTING AND FUTURE PV PROSUMER CONCEPTS, pg. 18}}

!Size
band!!% of total
capacity!!Notes

<10 kW

| align="right" |14.2%

|Single direct use systems, mostly residential solar pv systems

10–100 kW

| align="right" |38.2%

|Systems used collectively within one place such as a large residential block or large commercial premise or intensive agricultural units

100–500 kW

| align="right" |14.1%

|Typically larger commercial centres, hospitals, schools or industrial/agricultural premises or smaller ground mounted systems

>500 kW

| align="right" |33.5%

|Mostly district power systems, ground-mounted panels providing power to perhaps a mix of industrial and commercial sites

It is interesting to note that whilst large power plants receive a lot of attention in solar power articles, installations under 0.5 MW in size actually represented nearly two-thirds of the installed capacity in Germany in 2017.

= PV capacity by federal states =

[[File:Watts per capita Germany.svg|thumb|Watts per capita by state in 2013{{cite web|title=Global Market Outlook for Photovoltaics 2014–2018|url=http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf |website=epia.org|publisher=EPIA{{Snd}} European Photovoltaic Industry Association|access-date=12 June 2014|archive-url= https://web.archive.org/web/20140625154728/http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf |archive-date=25 June 2014|url-status=dead|page=24}}

style="width: 100%; font-size: 0.8em"
valign=top |

{{legend|#FF7F2A|10{{Snd}} 50 Watts}}

{{legend|#FF6600|50{{Snd}} 100 Watts}}

{{legend|#D45500|100{{Snd}} 200 Watts}}

{{legend|#AA4400|200{{Snd}} 350 Watts}}

| valign=top |

{{legend|#803300|350{{Snd}} 500 Watts}}

{{legend|#552200|500{{Snd}} 750 Watts}}

{{legend|#2B1100|>750 Watts}}

]]

Germany is made up of sixteen, partly sovereign federal states or {{lang|de|Länder}}. The southern states of Bavaria and Baden-Württemberg account for about half of the total, nationwide PV deployment and are also the wealthiest and most populous states after North Rhine-Westphalia. However, photovoltaic installations are widespread throughout the sixteen states and are not limited to the southern region of the country as demonstrated by a watts per capita distribution.

class="wikitable sortable" style="text-align: right;"

|+PV capacity in MW[http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/StatistikberichtEEG2008pdf.pdf?__blob=publicationFile&v=2 Bundesnetzagentur – EEG-Statistikbericht 2008]{{cite web|url=https://www.clearingstelle-eeg.de/files/BNetzA_Statistik_EEG_2009.pdf|title=Bundesnetzagentur – EEG-Statistikbericht 2009|website=clearingstelle-eeg.de}}[http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/StatistikberichtEEG2010pdf.pdf?__blob=publicationFile&v=2 Bundesnetzagentur – EEG-Statistikbericht 2010][http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/StatistikberichtEEG2011pdf.pdf?__blob=publicationFile&v=1 Bundesnetzagentur – EEG-Statistikbericht 2011]{{cite web|url=http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEGinZahlen_2012.xls?__blob=publicationFile&v=2|title=Bundesnetzagentur – EEG in Zahlen 2012|website=bundesnetzagentur.de}}{{cite web|url=http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEGinZahlen_2013.xls?__blob=publicationFile&v=3|title=Bundesnetzagentur – EEG in Zahlen 2013|website=bundesnetzagentur.de}}[http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEGinZahlen_2014.xlsx?__blob=publicationFile&v=2 Bundesnetzagentur – EEG in Zahlen 2014]{{cite web|url=http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/InstallierteLeistung_2015_BF.pdf?__blob=publicationFile&v=4|title=Bundesnetzagentur – Installierte EE-Leistung zum 31.12.2015 (vorläufig)|website=bundesnetzagentur.de}}{{cite web|url=https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEStatistikMaStRBNetzA.pdf?__blob=publicationFile&v=16|title=Statistiken ausgewählter erneuerbarer Energieträger zur Stromerzeugung - April 2023|author=Federal Network Agency|page=4/9|date=2023-05-19|access-date=2023-06-10}}

State

!2008 

!2009 

!2010 

!2011 

!2012 

!2013 

!2014 

!2015 

!2023
(April) 

!W per
capita
(2023-4) 

align=left | 20px Baden-Württemberg1,2451,7722,9073,7535,838.06,111.84,984.55,117.08,809791
align=left | 20px Bavaria2,3593,9556,3657,9619,700.510,424.711,099.811,309.219,5631,484
align=left | 20px Berlin1119685063.268.680.583.921558
align=left | 20px Brandenburg722196381,3132,576.12,711.22,901.02,981.55,9202,332
align=left | 20px Bremen45143032.335.339.942.270103
align=left | 20px Hamburg79272532.135.836.536.99048
align=left | 20px Hesse3505498681,1741,520.91,661.81,768.51,811.23,201508
align=left | 20px Lower Saxony3527091,4792,0513,045.13,257.43,490.63,580.45,957742
align=left | 20px Mecklenburg-Vorpommern4888263455957.71,098.51,337.91,414.43,5192,184
align=left | 20px North Rhine-Westphalia6171,0461,9252,6013,582.03,878.54,234.94,363.78,113452
align=left | 20px Rhineland-Palatinate3325048411,1241,528.21,670.81,862.21,920.53,356817
align=left | 20px Saarland67100158218318.8365.4407.3415.8738751
align=left | 20px Saxony1682885298361,280.81,412.31,575.11,607.52,995740
align=left | 20px Saxony-Anhalt941814508171,377.91,556.11,828.71,962.63,8911,793
align=left | 20px Schleswig-Holstein1593106959921,351.51,407.81,468.61,498.32,587885
align=left | 20px Thuringia95159327467871.71,013.91,119.91,187.42,2261,055
style="background:#FFFFCC;"

|align=left | Cumulative total installed

5,9799,91317,55423,86634,076.736,710.138,236.039,332.471,259856
align=left | Capacity added{{N/A}}3,9347,6416,31210,210.72,633.41,525.91,096.4

Photovoltaic power stations

{{main|List of photovoltaic power stations}}

{{update section|date=June 2023}}

= Largest photovoltaic power stations =

class="wikitable sortable"

! PV Power station

! Capacity
in MWp

!Commissioning

!Location

! Notes

Witznitz

| align=center | 605

| 2024

| Leipzig

| {{cite web |title=Europe's largest PV plant goes online |url=https://www.finanznachrichten.de/nachrichten-2024-04/61905988-europe-s-largest-pv-plant-goes-online-451.htm |website=FinanzNachrichten.de |date=10 April 2024}}

Solarpark Weesow-Willmersdorf

| align=center | 187

| 2020

|{{WikidataCoord|Q71147169|display=inline|name=Solarpark Weesow-Willmersdorf}}

| {{Cite web |title=Der EnBW-Solarpark in Weesow-Willmersdorf {{!}} EnBW |url=https://www.enbw.com/erneuerbare-energien/solarenergie/solarpark-weesow/ |access-date=2023-06-28 |website=Der EnBW-Solarpark in Weesow-Willmersdorf |language=de}}

Solarpark Tramm-Göhten

| align=center | 172

| 2022

|{{Coord|53.5267|11.6609|display=inline|name=Solarpark Tramm-Göhten}}

|{{Cite web |last=macmyday |date=2018-06-07 |title=Projekte |url=https://belectric.com/projekte/ |access-date=2023-06-28 |website=BELECTRIC |language=de-DE}}

Solarpark Meuro

| align=center | 166

|2011/2012

|{{WikidataCoord|Q7557076|display=inline|name=Solarpark Meuro}}

| PV Resources.com (2009). [http://www.pvresources.com/en/top50pv.php World's largest photovoltaic power plants]

Solarpark Gottesgabe

| align=center | 150

|2021

|{{WikidataCoord|Q111019562|display=inline|name=Solarpark Gottesgabe}}

|{{Cite web |title=Solarpark Gottesgabe {{!}} EnBW |url=https://www.enbw.com/erneuerbare-energien/solarenergie/solarpark-gottesgabe/ |access-date=2023-06-28 |website=Solarpark Gottesgabe |language=de}}

Solarpark Alttrebbin

| align=center | 150

|2021

|{{WikidataCoord|Q108586840|display=inline|name=Solarpark Alttrebbin}}

|{{Cite web |title=Solarpark Alttrebin {{!}} EnBW |url=https://www.enbw.com/erneuerbare-energien/solarenergie/solarpark-alttrebbin/ |access-date=2023-06-28 |website=Solarpark Alttrebin |language=de}}

Neuhardenberg Solar Park

| align=center | 145

|September 2012

|{{WikidataCoord|Q7001775|display=inline|name=Neuhardenberg Solar Park}}

| {{cite web|url=http://www.lima-group.com/en-au/references/contract-for-services.php?showproject=55 |title=Contract for services |website=LIMA Group GmbH }}

Templin Solar Park

| align=center | 128.5

|September 2012

|{{WikidataCoord|Q7698846|display=inline|name=Templin Solar Park}}

| {{cite web|url=http://cfb-fonds.com/en/cfb-news/news/single-view/commerz-real-kauft-groessten-solarpark-deutschlands |title=CFB-Fonds|author=CFB News: Commerz Real Acquires Germany's Largest Solar Park}}

Solarpark Schornhof

| align=center | 120

|2020

|{{WikidataCoord|Q111968016|display=inline|name=Solarpark Schornhof}}

| {{Cite web |last= |date=2023-01-30 |title=MKG GÖBEL / 120 MWp solar park Schornhof |url=https://www.mkg-goebel.de/en/schornhof/ |access-date=2023-06-28 |website=MKG GÖBEL |language=en-GB}}

Brandenburg-Briest Solarpark

| align=center | 91

|December 2011

|{{WikidataCoord|Q175521|display=inline|name=Brandenburg-Briest Solarpark}}

|

Solarpark Gaarz

| align=center | 90

|2021

|{{Coord|53.4148|12.2470|display=inline|name=Solarpark Gaarz}}

|{{Cite web |title=Gaarz, Deutschland - ENERPARC AG |url=https://www.enerparc.de/projekte/projekt-gaarz-deutschland |access-date=2023-06-28 |website=www.enerparc.de |language=de}}

Solarpark Finow Tower

| align=center | 84.7

|2010/2011

|{{WikidataCoord|Q7557073|display=inline|name=Solarpark Finow Tower}}

|

Eggebek Solar Park

| align=center | 83.6

|2011

|{{WikidataCoord|Q5347878|display=inline|name=Eggebek Solar Park}}

|

Finsterwalde Solar Park

| align=center | 80.7

|2009/2010

|{{WikidataCoord|Q45442|display=inline|name=Finsterwalde Solar Park}}

| {{cite web|url=http://www.pv-tech.org/news/_a/good_energies_nibc_infrastructure_partners_acquire_finsterwalde_ii_and_fins/ |title=Good Energies, NIBC Infrastructure Partners acquire Finsterwalde II and Finsterwalde III|website=pv-tech.org}}{{cite web|url=http://www.u-energy.de/download/2010_06_18_realisierung_solarpark_finsterwalde_2_und_3_eng.pdf |title=Implementation of the 39 MWp{{Snd}} "Solar Park Finsterwalde II and Finsterwalde III"|website=u-energy.de}}

Solarpark Zietlitz

| align=center | 76

| 2021

|{{Coord|53.6391|12.3643|display=inline|name=Solarpark Zietlitz}}

| {{Cite web |last=Friedrich |first=Mariana |date=2020-07-17 |title=Successful ground-breaking ceremony: start of construction for the Zietlitz solar park in Mecklenburg-Vorpommern |url=https://goldbecksolar.com/en/spatenstich-solarpark-zielitz/ |access-date=2023-06-28 |website=Goldbeck Solar GmbH |language=en-US}}

Lieberose Photovoltaic Park

| align=center | 71.8

|2009

|{{WikidataCoord|Q828471|display=inline|name=Lieberose Photovoltaic Park}}

| {{cite web|url=http://globalsolartechnology.com/index.php?option=com_content&task=view&id=3804&Itemid=9 |title=Lieberose solar farm becomes Germany's biggest, World's second-biggest}}{{cite web|url=http://www.spiegel.de/international/germany/0,1518,643961,00.html |title=Leaders In Alternative Energy: Germany Turns On World's Biggest Solar Power Project|author=SPIEGEL ONLINE, Hamburg, Germany|date=20 August 2009|work=Der Spiegel}}

Solarpark Alt Daber

| align=center | 67.8

|2011

|{{WikidataCoord|Q7557069|display=inline|name=Solarpark Alt Daber}}

|

Solarpark Ganzlin

| align=center | 65

| 2020

|{{Coord|53.3818|12.2688|display=inline|name=Solarpark Ganzlin}}

|{{Cite web |title=Solarpark Ganzlin: PV-Freiflächenanlage von GP JOULE |url=https://www.gp-joule.com/de/referenzen/solar/solarpark-ganzlin |access-date=2023-06-28 |website=www.gp-joule.com |language=de-DE}}

Solarpark Lauterbach

| align=center | 54.7

| 2022

|{{Coord|50.59600|9.36900|display=inline|name=Solarpark Lauterbach}}

|{{Cite web |title=Solarpark Lauterbach {{!}} Erneuerbare Energien {{!}} UmweltBank |url=https://www.umweltbank.de/firmen/projekte-finanzieren/photovoltaik/solarpark-lauterbach |access-date=2023-06-28 |website=UmweltBank {{!}} Deutschlands grünste Bank |language=de}}

Strasskirchen Solar Park

| align=center | 54

|December 2009

|{{WikidataCoord|Q3306799|display=inline|name=Strasskirchen Solar Park}}

|

Walddrehna Solar Park

| align=center | 52.3

|2012

|{{WikidataCoord|Q7961375|display=inline|name=Walddrehna Solar Park}}

|

Waldpolenz Solar Park

| align=center | 52

|December 2008

|{{WikidataCoord|Q2916493|display=inline|name=Waldpolenz Solar Park}}

| {{cite web|url=http://www.juwi.de/uploads/media/PM_Solar_Brandis-Koethen_2008.12.pdf |title=Germany's largest Solar parks connected to the grid (19 Dec 08)|website=juwi.de}}{{cite web|url=http://www.sonnenseite.com/index.php?pageID=6&news:oid=n6986&template=news_detail.html |title=Large photovoltaic plant in Muldentalkreis|website=sonnenseite.com}}

Tutow Solar Park

| align=center | 52

|2009/2010/2011

|{{WikidataCoord|Q7856981|display=inline|name=Tutow Solar Park}}

|

{{maplink|type=named|from=#Largest photovoltaic power stations|text=Location map}}

= Other notable photovoltaic stations =

class="wikitable sortable" style="text-align: center;"

! Name & Description

! Capacity
in MWp

! Location

! Annual yield
in MWh

! Capacity factor

! Coordinates

align=left | Erlasee Solar Park, 1408 SOLON

| 12

| Arnstein

| 14,000

| 0.13

| align=left | {{coord|50|0|10|N|9|55|15|E |type:landmark_region:DE-BY |name=Erlasee Solar Park }}

align=left | Gottelborn Solar Park

| 8.4

| Göttelborn

| n.a.

| n.a.

| align=left | {{WikidataCoord|Q5587998|display=inline|name=Gottelborn Solar Park}}

align=left | Bavaria Solarpark, 57,600 solar modules

| 6.3

| Mühlhausen

| 6,750

| 0.12

| align=left | {{coord|49|09|29|N|11|25|59|E |type:landmark_region:DE-TH |name=Bavaria Solarpark }}

align=left | Rote Jahne Solar Park, 92,880 thin-film modules,
First Solar, FS-260, FS-262 and FS-265{{usurped|1=[https://web.archive.org/web/20071011155343/http://www.renewableenergyaccess.com/rea/news/story?id=48027 Construction Complete on 6 MW Thin-Film PV Installation in Germany]}} Renewable Energy Access, 5 April 2007.https://www.webcitation.org/6QwLVgSYo?url=http://www.photovoltaik-im-web.de/Rote_Jahne.pdf Rote Jahne Factsheet (de)

| 6.0

| Doberschütz

| 5,700

| 0.11

| align=left | {{WikidataCoord|Q7370354|display=inline|name=Rote Jahne Solar Park}}

align=left | Bürstadt Solar Farm, 30,000 BP Solar modules

| 5.0

| Bürstadt

| 4,200

| 0.10

| align=left | {{coord|49|39|N|8|28|E |type:landmark_region:DE-HE |name= }}

align=left | Espenhain, 33,500 Shell Solar modules

| 5.0

| Espenhain

| 5,000

| 0.11

| align=left | {{coord|51|12|N|12|31|E |type:landmark_region:DE-SN |name= }}

align=left | Geiseltalsee Solarpark, 24,864 BP solar modules

| 4.0

| Merseburg

| 3,400

| 0.10

| align=left | {{coord|51|22|N|12|0|E |type:landmark_region:DE-ST |name=Geiseltalsee Solarpark }}

align=left | Hemau Solar Farm, 32,740 solar modules

| 4.0

| Hemau

| 3,900

| 0.11

| align=left | {{coord|49|3|N|11|47|E |type:landmark_region:DE-BY |name= }}

align=left | Solara, Sharp and Kyocera solar modules

| 3.3

| Dingolfing

| 3,050

| 0.11

| align=left | {{coord|48|38|N|12|30|E |type:landmark_region:DE-BY |name= }}

align=left | [https://www.ews-schoenau.de/ews/energieerzeugung/projektvorstellung/solarpark-herten/ Solarpark Herten], 11.319 Modules from Astronergy

| 3

| Rheinfelden

| 3,000

| 0.11

| align=left | {{coord|47|32|39|N|7|43|30|E |type:landmark_region:DE-BY |name= }}

align=left | Bavaria Solarpark, Sharp solar modules

| 1.9

| Günching

| n.a.

| n.a.

| align=left | {{coord|49.2636|11.5907|name=Bavaria Solarpark}}

align=left | Bavaria Solarpark, Sharp solar modules

| 1.9

| Minihof

| n.a.

| n.a.

| align=left | {{coord|48.47818|12.91914|name=Bavaria Solarpark}}

{{maplink|type=named|from=#Other notable photovoltaic stations|text=Location map}}

Gallery

File:Krughütte Luftaufnahme Parabel.jpg|Krughütte Solar Park

File:Alsfeld Lingelbach Breitenbacher Strasse 8 n 13338.png|Rooftop solar on half-timbered house

File:LieberoseSolarpark.jpg|Lieberose Photovoltaic Park

File:Greifswald Dorfkirche-Wieck May-2009 SL272548.jpg|Solar panels on a church

File:SolarparkEggebek.jpg|Eggebek Solar Park

File:Emden Bunker.jpg|Old bunker cladded with solar

File:Feuerwehr Affolterbach Hessen 2011.JPG|Rooftop solar PV on a fire department building

File:Ivenack-scheune.jpg|PV system on a barn

File:Photovoltaik Zugspitze.jpg|Zugspitze, Germany's highest situated PV system

File:SolarFachwerkhaus.jpg|A small, roof-top mounted PV system in Bonn

Image:Berlin pv-system block-103 20050309 p1010367.jpg|Rooftop photovoltaic power station in Berlin

Image:Juwi PV Field.jpg|The Waldpolenz Solar Park uses thin-film CdTe-modules.

File:Solarfeld Erlasee, 1.jpg|Erlasee was the world's largest solar farm in 2006/2007.

File:SolarturmJülich.jpg|The Jülich Solar Tower, a concentrated solar power plant

File:Fotovoltaik Goettelborn.jpg|The Gottelborn Solar Park in front of coal-fired power plant "Weiher III"

File:Himmelspfeil Göttelborn 2008.jpg|Viewing platform at the Gottelborn Solar Park

Companies

Some companies have collapsed since 2008, facing harsh competition from imported solar panels. Some were taken over like Bosch Solar Energy by SolarWorld. Major German solar companies include:

{{Div col |colwidth=25em}}

{{Div col end}}

See also

References

{{Reflist|30em}}