SonicParanoid
{{Multiple issues|
{{Orphan|date=September 2020}}
{{Context|date=April 2020}}
}}
SonicParanoid is an algorithm for the de-novo prediction of orthologous genes among multiple species.{{cite journal
|last1 = Cosentino
|first1 = Salvatore
|last2 = Iwasaki
|first2 = Wataru
|year= 2019
|title= SonicParanoid: fast, accurate and easy orthology inference
|journal= Bioinformatics
|volume= 35
|issue= 1
|pages= 149–151
|doi= 10.1093/bioinformatics/bty631
| pmid = 30032301
|pmc = 6298048
}} It borrows the main idea from InParanoid{{Cite journal
| doi = 10.1006/jmbi.2000.5197
| year = 2001
| volume = 314
| issue = 5
| pages = 1041–1052
| last = Remm
| first = Maido
|author2=Christian E.V. Storm |author3=Erik L.L. Sonnhammer
| title = Automatic clustering of orthologs and in-paralogs from pairwise species comparisons
| journal = Journal of Molecular Biology
| pmid = 11743721
| citeseerx = 10.1.1.328.6724
}} with substantial changes to the algorithm that drastically reduce the time required for the analysis. Additionally, SonicParanoid generates groups of orthologous genes shared among the input proteomes using single-linkage hierarchical clustering or markov clustering. The latest iteration of SonicParanoid uses machine learning to substantially reduce execution times, and language models to infer orthologs at the domain level.{{cite journal |last1=Cosentino |first1=Salvatore |last2=Sriswasdi |first2=Sira |last3=Iwasaki |first3=Wataru |title=SonicParanoid2: fast, accurate, and comprehensive orthology inference with machine learning and language models |journal=Genome Biology |date=25 July 2024 |volume=25 |issue=1 |pages=195 |doi=10.1186/s13059-024-03298-4 |doi-access=free |pmid=39054525|pmc = 11270883}}
References
{{reflist}}
External links
- [https://gitlab.com/salvo981/sonicparanoid2 Source code on GitLab]
- [https://gitlab.com/salvo981/sonicparanoid2/-/wikis/home SonicParanoid Documentation]
- [https://pypi.org/project/sonicparanoid/ Python Package]
{{bioinformatics-stub}}