Spartan (chemistry software)

{{About|chemistry software|other software|Spartan (disambiguation)}}

{{Infobox software

| name = Spartan

| logo = File:Sparatan24LogoSmall.png

| screenshot = Spartan24GUI.png

| caption = Spartan graphical user interface

| collapsible =

| developer = Wavefunction, Inc.[http://www.wavefun.com Wavefunction, Inc.] & Q-Chem

| released = {{Start date and age|1991}}

| latest release version = {{wikidata|property|preferred|P348|P548=Q2804309|P348}}

| latest release date = {{wikidata|qualifier|preferred|P348|P548=Q2804309|P577}}

| programming language = C, C++, Fortran, Qt

| operating system = Windows, Mac OS X, Linux

| platform = x86-64

| size =

| language = English

| genre = Molecular modelling, computational chemistry

| license = Proprietary commercial software

| website = {{URL|www.wavefun.com}}

}}

Spartan is a molecular modelling and computational chemistry application from Wavefunction.Computational Chemistry, David Young, Wiley-Interscience, 2001. Appendix A. A.1.6 pg 330, Spartan It contains code for molecular mechanics, semi-empirical methods, ab initio models,{{cite book |last= Hehre |first= Warren J. |author2=Leo Radom |author3=Paul v.R. Schleyer |author4=John A. Pople |title= Ab initio molecular orbital theory |title-link= molecular orbital theory |publisher= John Wiley & Sons |year= 1986 |isbn= 0-471-81241-2}} density functional models,{{cite journal |title=Inhomogeneous electron gas |journal=Physical Review |year=1964 |first=Pierre |last=Hohenberg |author2=Walter Kohn |volume=136 |issue=3B |pages=B864–B871 |doi=10.1103/PhysRev.136.B864 |bibcode=1964PhRv..136..864H|doi-access=free }} post-Hartree–Fock models,{{cite book |last= Cramer |first= Christopher J. |author-link=Christopher J. Cramer|title= Essentials of Computational Chemistry |publisher= John Wiley & Sons |year= 2002 |isbn= 978-0-470-09182-1}} thermochemical recipes including G3(MP2){{cite journal |author1=Larry A. Curtiss |author2=Paul C. Redfern |author3=Krishnan Raghavachari |author4=Vitaly Rassolov |author5=John A. Pople |name-list-style=amp |title= Gaussian-3 theory using reduced Møller-Plesset order |journal= The Journal of Chemical Physics |volume= 110 |pages= 4703–4710 |publisher= The American Institute of Physics |date= 1998 |doi= 10.1063/1.478385 |issue= 10|bibcode= 1999JChPh.110.4703C}} and T1,{{cite journal |last= Ohlinger |first= William S. |author2=Philip E. Klunzinger |author3=Bernard J. Deppmeier |author4=Warren J. Hehre |title= Efficient Calculation of Heats of Formation |journal= The Journal of Physical Chemistry A |volume= 113 |issue= 10 |pages= 2165–2175 |publisher= ACS Publications |date= 2009 |doi= 10.1021/jp810144q |pmid=19222177|bibcode=2009JPCA..113.2165O }} and machine learning models like corrected MMFF{{cite journal |last= Hehre |first= Thomas |author2=Philip E. Klunzinger |author3=Bernard Deppmeier |author4=William Ohlinger |author5=Warren J. Hehre |title= Practical Machine Learning Strategies. I. Correcting the MMFF Molecular Mechanics Model to More Accurately Provide Conformational Energy Differences in Flexible Organic Molecules |journal= The Journal of Computational Chemistry |volume= 46 |issue= 1 |pages= e70016 |publisher= John Wiley & Sons |date= 2025 |doi= 10.1002/jcc.70016 |pmid=39757343 }} and Est. Density Functional.{{cite journal |last= Hehre |first= Thomas |author2=Philip E. Klunzinger |author3=Bernard Deppmeier |author4=William Ohlinger |author5=Warren J. Hehre |title= Accurate Prediction of ωB97X-D/6-31G* Equilibrium Geometries from a Neural Net Starting from Merck Molecular Force Field (MMFF) Molecular Mechanics Geometries |journal= Journal of Chemical Information and Modeling |volume= Articles ASAP |publisher= ACS Publications |date= 2025 |doi= 10.1021/acs.jcim.4c01898 |pmid=39961016 }} Quantum chemistry calculations in Spartan are powered by Q-Chem.{{cite journal |last1=Krylov |first1=Anna I. |last2=Gill |first2=Peter M.W. |title=Q-Chem: an engine for innovation |journal=Wiley Interdisciplinary Reviews: Computational Molecular Science |date=2013 |volume=3 |issue=3 |pages=317–326 |doi=10.1002/wcms.1122|s2cid=16713704 }}

Primary functions are to supply information about structures, relative stabilities and other properties of isolated molecules. Molecular mechanics calculations on complex molecules are common in the chemical community. Quantum chemical calculations, including Hartree–Fock method molecular orbital calculations, but especially calculations that include electronic correlation, are more time-consuming in comparison.

Quantum chemical calculations are also called upon to furnish information about mechanisms and product distributions of chemical reactions, either directly by calculations on transition states, or based on Hammond's postulate,{{cite journal |author= Hammond, G. S. |title= A Correlation of Reaction Rates |journal= Journal of the American Chemical Society |volume= 77 |pages= 334–338 |publisher= ACS Publications |year= 1955 |doi= 10.1021/ja01607a027 |issue= 2}} by modeling the steric and electronic demands of the reactants. Quantitative calculations, leading directly to information about the geometries of transition states, and about reaction mechanisms in general, are increasingly common, while qualitative models are still needed for systems that are too large to be subjected to more rigorous treatments. Quantum chemical calculations can supply information to complement existing experimental data or replace it altogether, for example, atomic charges for quantitative structure-activity relationship (QSAR){{cite book |author= Leach, Andrew R. |title= Molecular modelling: principles and applications |publisher= Prentice Hall |location= Englewood Cliffs, N.J |year= 2001 |isbn= 0-582-38210-6}} analyses, and intermolecular potentials for molecular mechanics and molecular dynamics calculations.

Spartan applies computational chemistry methods (theoretical models) to many standard tasks that provide calculated data applicable to the determination of molecular shape conformation, structure (equilibrium and transition state geometry), NMR, IR, Raman, and UV-visible spectra, molecular (and atomic) properties, reactivity, and selectivity.

Computational abilities

This software provides the molecular mechanics, Merck Molecular Force Field (MMFF),{{cite journal |author= Thomas A. Halgren |title= Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 |journal= Journal of Computational Chemistry |year= 1996 |volume= 17 |issue= 5–6 |pages= 490–519 |doi= 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P}} (for validation test suite), MMFF with extensions, and SYBYL,{{cite journal |author1=Matthew Clark |author2=Richard D. Cramer III |author3=Nicole Van Opdenbosch |name-list-style=amp |title= Validation of the general purpose tripos 5.2 force field |journal= Journal of Computational Chemistry |year= 1989 |volume= 10 |pages= 982–1012 |doi= 10.1002/jcc.540100804 |issue= 8|s2cid=97743988 }} force fields calculation, Semi-empirical calculations, MNDO/MNDO(D),{{cite journal |title= Ground states of molecules. 38. The MNDO method. Approximations and parameters |author1=Michael J. S. Dewar |author2=Walter Thiel |name-list-style=amp |journal= Journal of the American Chemical Society |volume= 99 |pages= 4899–4907 |publisher= ACS Publications |year= 1977 |doi= 10.1021/ja00457a004 |issue= 15}} Austin Model 1 (AM1),{{cite journal |title= Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions|author1=Michael J. S. Dewar |author2=Eve G. Zoebisch |author3=Eamonn F. Healy |author4=James J. P. Stewart |journal= Journal of the American Chemical Society |volume= 107 |pages= 3902–3909 |publisher= ACS Publications |year= 1985 |doi= 10.1021/ja00299a024 |issue= 13}} PM3,{{cite journal |title= Optimization of parameters for semiempirical methods I. Method |author= James J. P. Stewart |journal= The Journal of Computational Chemistry |volume= 10 |pages= 209–220 |year= 1989 |doi= 10.1002/jcc.540100208 |issue= 2|s2cid= 36907984 }}{{cite journal |title= Optimization of parameters for semiempirical methods II. Applications |author= James J. P. Stewart |journal= The Journal of Computational Chemistry |volume= 10 |pages= 221–264 |year= 1989 |doi= 10.1002/jcc.540100209 |issue= 2|s2cid= 98850840 }}{{cite journal |title= Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi |author= James J. P. Stewart |journal= The Journal of Computational Chemistry |volume= 12 |pages= 320–341|year= 1991 |doi= 10.1002/jcc.540120306 |issue= 3|s2cid= 94913344 |url= https://zenodo.org/record/1229233 }}{{cite journal |title= Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements |author= James J. P. Stewart |journal= The Journal of Molecular Modeling |volume= 10 |pages= 155–164 |publisher= Springer Berlin-Heidelberg |year= 2004 |doi= 10.1007/s00894-004-0183-z |issue= 2 |pmid=14997367|s2cid= 11617476 }} Recife Model 1 (RM1){{cite journal |title= RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I |author1=Gerd B. Rocha |author2=Ricardo O. Freire |author3=Alfredo M. Simas |author4=James J. P. Stewart |journal= The Journal of Computational Chemistry |volume= 27 |pages= 1101–1111 |year= 2006 |doi= 10.1002/jcc.20425 |issue= 10 |pmid=16691568|s2cid=9017673 }} PM6.{{cite journal |title= Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements |author= James J. P. Stewart |journal= The Journal of Molecular Modeling |volume= 13 |pages= 1173–1213 |publisher= Springer |year= 2007 |doi= 10.1007/s00894-007-0233-4 |issue= 12|pmc= 2039871 |pmid=17828561}}

  • Hartree–Fock, self-consistent field (SCF) methods, available with implicit solvent (SM8).{{cite journal |title= Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges |author1=Aleksandr V. Marenich |author2=Ryan M. Olson |author3=Casey P. Kelly |author4=Christopher J. Cramer |author4-link=Christopher J. Cramer |author5=Donald G. Truhlar |name-list-style=amp |journal= Journal of Chemical Theory and Computation |volume= 3 |pages= 2011–2033 |publisher= ACS Publications |year= 2007 |doi= 10.1021/ct7001418 |issue= 6|pmid=26636198 }}
  • Restricted, unrestricted, and restricted open-shell Hartree–Fock
  • Density functional theory (DFT) methods, available with implicit solvent (SM8).
  • Standard functionals: BP,{{cite journal |author= A. D. Becke |title= Density-functional exchange-energy approximation with correct asymptotic behavior |journal= Physical Review A |volume= 38 |pages= 3098–3100 |publisher= American Physical Society |date= 1988 |doi= 10.1103/PhysRevA.38.3098 |pmid=9900728 |issue= 6 |bibcode=1988PhRvA..38.3098B}}{{cite journal |author= John P. Perdew |title= Density-functional approximation for the correlation energy of the inhomogeneous electron gas |journal= Physical Review B |volume= 33 |pages= 8822–8824 |publisher= American Physical Society |year= 1986 |doi= 10.1103/PhysRevB.33.8822 |issue= 12|pmid= 9938299 |bibcode= 1986PhRvB..33.8822P}} BLYP,{{cite journal |last= Lee |first= Chengeth |author2=Weitao Yang |author3=Robert G. Parr |title= Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density |journal= Physical Review B |volume= 37 |pages= 785–789 |publisher= American Physical Society |date= 1988 |doi= 10.1103/PhysRevB.37.785 |issue= 2 |pmid= 9944570 |bibcode=1988PhRvB..37..785L|url= https://cdr.lib.unc.edu/downloads/p2677460w }} B3LYP,{{cite journal |title= Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields|author1=P. J. Stephens |author2=F. J. Devlin |author3=C. F. Chabalowski |author4=M. J. Frisch |journal= The Journal of Physical Chemistry |volume= 98 |pages= 11623–11627 |publisher= ACS Publications |year= 1994 |doi= 10.1021/j100096a001 |issue= 45|s2cid=97035345 }} EDF1,{{cite journal |title= Empirical density functionals |author= Ross D. Adamsona, Peter M. W. Gill and John A. Pople |journal= Chemical Physics Letters |volume= 284 |issue= 5–6 |pages= 6–11 |publisher= Elsevier |year= 1998 |doi= 10.1016/S0009-2614(97)01282-7 |bibcode=1998CPL...284....6A}} EDF2,{{cite journal |title= EDF2: A density functional for predicting molecular vibrational frequencies |publisher= Commonwealth Scientific and Industrial Research Organization |author= Peter M. W. Gill, Yeh Lin Ching and Michael W. George |journal= Australian Journal of Chemistry |volume= 57 |pages= 365–370 |year= 2004 |doi= 10.1071/CH03263 |issue= 4}} M06,{{cite journal |title= The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals |author1=Yan Zhao |author2=Donald G. Truhlar |name-list-style=amp |journal= Theoretical Chemistry Accounts |volume= 120 |issue= 1–3 |pages= 215–241 |publisher= Springer Berlin / Heidelberg |year= 2008 |doi= 10.1007/s00214-007-0310-x|doi-access= free }} ωB97X-D{{cite journal |title= Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections |author1=J. D. Chai |author2=Martin Head-Gordon |name-list-style=amp |journal= Physical Chemistry Chemical Physics |volume= 10 |pages= 6615–66120 |publisher= RSC Publishing |year= 2008 |doi= 10.1039/b810189b |issue= 44 |pmid=18989472|bibcode= 2008PCCP...10.6615C|s2cid=32301575 |url=https://digital.library.unt.edu/ark:/67531/metadc929924/ }}

File:T1 vs NIST Expiremental Heat of Formation.png

  • Exchange functionals: HF, Slater-Dirac,{{cite journal |title= Note on Exchange Phenomena in the Thomas Atom |last1=Dirac | first1=P. A. M. |authorlink1=Paul Dirac |journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume= 26 |pages= 376–385 |date= 1930 |doi= 10.1017/S0305004100016108 |issue= 3 |bibcode=1930PCPS...26..376D|doi-access= free }} Becke88, Gill96,{{cite journal |author= Peter M. W. Gill |title= A new gradient-corrected exchange functional |journal= Molecular Physics |volume= 89 |pages= 433–445 |publisher= Taylor & Francis |date= 1996 |doi= 10.1080/00268979609482484 |issue= 2|bibcode= 1996MolPh..89..433G}} GG99,{{cite journal |author1=A.T.B. Gilbert |author2=P.M.W. Gill |name-list-style=amp |title= Decomposition of exchange-correlation energies |journal= Chemical Physics Letters |volume= 312 |issue= 5–6 |pages= 511–521 |publisher= Elsevier |year= 1999 |doi= 10.1016/S0009-2614(99)00836-2 |bibcode=1999CPL...312..511G}} B(EDF1), PW91{{cite journal |author1=John P. Perdew |author2=Yue Wang |name-list-style=amp |title= Accurate and simple analytic representation of the electron-gas correlation energy |journal= Physical Review B |volume= 45 |pages= 13244–13249 |publisher= American Physical Society |year= 1992 |doi= 10.1103/PhysRevB.45.13244 |issue= 23 |pmid=10001404 |bibcode=1992PhRvB..4513244P}}
  • Correlation functionals: VWN,{{cite journal |last1= Vosko |first1= S.H. |last2= Wilk |first2= L. |last3= Nusair |first3= M. |title= Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis |journal= Canadian Journal of Physics |volume= 58 |pages= 1200–1211 |publisher= NRC Research Press |date= 1980 |doi= 10.1139/p80-159 |issue= 8 |bibcode=1980CaJPh..58.1200V|s2cid= 122287164 |url= https://cloudfront.escholarship.org/dist/prd/content/qt23j4q7zm/qt23j4q7zm.pdf?t=obcp14 }} LYP, PW91,{{cite journal |author1=John P. Perdew |author2=Yue Wang |name-list-style=amp |title= Accurate and simple analytic representation of the electron-gas correlation energy |journal= Physical Review B |volume= 45 |pages= 13244–13249 |publisher= The American Physical Society |date= 1992 |doi= 10.1103/PhysRevB.45.13244 |issue= 23 |pmid=10001404 |bibcode=1992PhRvB..4513244P}} P86,{{cite journal |title= Density-functional approximation for the correlation energy of the inhomogeneous electron gas |author= J. P. Perdew |journal= Physical Review B |volume= 23 |pages= 5048–5079 |publisher= The American Physical Society |year= 1981 |doi= 10.1103/PhysRevB.23.5048 |issue= 10 |bibcode=1981PhRvB..23.5048P|doi-access= free }} PZ81,{{cite journal |title= Self-interaction correction to density-functional approximations for many-electron systems |author1=J. P. Perdew |author2=A. Zunger |name-list-style=amp |journal= Physical Review B |volume= 33 |pages= 8822–8824 |publisher= The American Physical Society |year= 1986 |doi= 10.1103/PhysRevB.33.8822 |issue= 12|pmid=9938299 |bibcode= 1986PhRvB..33.8822P}} PBE.{{cite journal |author1=John P. Perdew |author2=Kieron Burke |author3=Matthias Ernzerhof |name-list-style=amp |title= Generalized Gradient Approximation Made Simple |journal= Physical Review Letters |volume= 77 |pages= 3865–3868 |publisher= American Physical Society |date= 1996 |doi= 10.1103/PhysRevLett.77.3865 |pmid=10062328 |issue= 18 |bibcode=1996PhRvL..77.3865P|s2cid=6425905 }}
  • Combination or hybrid functionals: B3PW91,{{cite journal |title= Exchange holes in inhomogeneous systems: A coordinate-space model|author1=A. D. Becke |author2=M. R. Roussel |name-list-style=amp |journal= Physical Review A |volume= 39 |issue= 8 |pages= 3761–3767 |publisher= The American Physical Society |year= 1989 |pmid= 9901696 |doi= 10.1103/PhysRevA.39.3761 |bibcode= 1989PhRvA..39.3761B}} B3LYP, B3LYP5, EDF1, EDF2, BMK{{cite journal |title= Development of density functionals for thermochemical kinetics|author1=A. Daniel Boese |author2=Jan M. L. Martin |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 121 |pages= 3405–3417 |year= 2004 |doi= 10.1063/1.1774975 |pmid=15303903 |issue= 8|arxiv= physics/0405158 |bibcode= 2004JChPh.121.3405B|s2cid=29764068 }}
  • Truhlar group[http://comp.chem.umn.edu/truhlar/ Truhlar Group] functionals: M05,{{cite journal |title= Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parameterization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions|author1=Yan Zhao |author2=Nathan E. Schultz |author3=Donald G. Truhlar |name-list-style=amp |journal= Journal of Chemical Theory and Computation |volume= 2 |pages= 364–382 |publisher= ACS Publications |year= 2006 |doi= 10.1021/ct0502763 |issue= 2 |pmid=26626525}} M05-2X, M06, M06-L {{cite journal |title= A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions |author1=Yan Zhao |author2=Donald G. Truhlar |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 125 |pages= 194101–194119 |publisher= American Institute of Physics |year= 2008 |doi= 10.1063/1.2370993 |issue= 19|bibcode= 2006JChPh.125s4101Z |pmid=17129083}} M06-2X, M06-HF{{cite journal |title= Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States |author1=Yan Zhao |author2=Donald G. Truhlar |name-list-style=amp |journal= The Journal of Physical Chemistry A |volume= 110 |pages= 13126–13130 |publisher= ACS Publications |year= 2008 |doi= 10.1021/jp066479k |issue= 49|bibcode=2006JPCA..11013126Z |pmid=17149824}}
  • Head-Gordon group functionals:[http://www.cchem.berkeley.edu/mhggrp/Head-Gordon_Home.html Head-Gordon Group] ωB97,{{cite journal |title= Systematic optimization of long-range corrected hybrid density functionals |author1=Jeng-Da Chai |author2=Martin Head-Gordon |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 128 |pages= 084106–084121 |publisher= American Institute of Physics |year= 2006 |doi= 10.1063/1.2834918 |issue= 8 |pmid=18315032 |bibcode= 2008JChPh.128h4106C|url=http://ntur.lib.ntu.edu.tw/bitstream/246246/221148/-1/05.pdf }} ωB97X, ωB97X-D
  • Coupled cluster methods.
  • CCSD,{{cite journal |author1=George D. Purvis |author2=Rodney J. Bartlett |name-list-style=amp |title= A full coupled-cluster singles and doubles model: The inclusion of disconnected triples |journal= The Journal of Chemical Physics |volume= 76 |pages= 1910–1919 |publisher= The American Institute of Physics |year= 1982 |doi= 10.1063/1.443164 |issue= 4 |bibcode=1982JChPh..76.1910P}} CCSD(T),{{cite journal |author1=Krishnan Raghavachari |author2=Gary W. Trucks |author3=John A. Pople and |author4=Martin Head-Gordon |title= A fifth-order perturbation comparison of electron correlation theories |journal= Chemical Physics Letters |volume= 157 |pages= 479–483 |publisher= Elsevier Science |date= 1989 |doi= 10.1016/S0009-2614(89)87395-6 |issue= 6 |bibcode=1989CPL...157..479R}} CCSD(2),{{cite journal |author1=Troy Van Voorhis |author2=Martin Head-Gordon |name-list-style=amp |title= Two-body coupled cluster expansions |journal= The Journal of Chemical Physics |volume= 115 |pages= 5033–5041 |publisher= The American Institute of Physics |date= 2001 |doi= 10.1063/1.1390516 |issue= 11 |bibcode=2001JChPh.115.5033V}} OD,{{cite journal |author1=C. David Sherrill |author2=Anna I. Krylov |author3=Edward F. C. Byrd |author4=Martin Head-Gordon |name-list-style=amp |title= Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in {{chem|O|4|+}} |journal= The Journal of Chemical Physics |volume= 109 |pages= 4171–4182 |publisher= The American Institute of Physics |date= 1998 |doi= 10.1063/1.477023 |issue= 11|bibcode= 1998JChPh.109.4171S}} OD(T), OD(2),{{cite journal |author1=Steven R. Gwaltney |author2=Martin Head-Gordon |name-list-style=amp |title= A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian |journal= Chemical Physics Letters |volume= 323 |issue= 1–2 |pages= 21–28 |publisher= Elsevier |date= 2000 |doi= 10.1016/S0009-2614(00)00423-1 |bibcode=2000CPL...323...21G}} QCCD,{{cite journal |author1=Troy Van Voorhis |author2=Martin Head-Gordon |name-list-style=amp |title= The quadratic coupled cluster doubles model |journal= Chemical Physics Letters |volume= 330 |issue= 5–6 |pages= 585–594 |publisher= Elsevier |date= 2000 |doi= 10.1016/S0009-2614(00)01137-4 |bibcode=2000CPL...330..585V}} VOD,{{cite journal |author1=Anna I. Krylov |author2=C. David Sherrill |author3=Edward F. C. Byrd |author4=Martin Head-Gordon |name-list-style=amp |title= Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model |journal= The Journal of Chemical Physics |volume= 109 |pages= 10669–10678 |publisher= The American Institute of Physics |date= 1998 |doi= 10.1063/1.477764 |issue= 24|bibcode= 1998JChPh.10910669K}} VOD(2), VQCCD
  • Møller–Plesset methods.
  • MP2,{{cite journal |author1=Chr. Møller |author2=M. S. Plesset |name-list-style=amp |title= Note on an Approximation Treatment form Many-Electron Systems |journal= Physical Review |volume= 46 |pages= 618–622 |publisher= The American Physical Society |date= 1934 |doi= 10.1103/PhysRev.46.618 |issue= 7 |bibcode=1934PhRv...46..618M|url= https://authors.library.caltech.edu/1753/1/MOLpr34.pdf }}{{cite journal |doi= 10.1016/0009-2614(88)85250-3 |title= MP2 energy evaluation by direct methods |year= 1988 |last1= Head-Gordon |first1= Martin |last2= Pople |first2= John A. |last3= Frisch |first3= Michael J. |journal= Chemical Physics Letters |volume= 153 |issue= 6 |pages= 503–506 |bibcode=1988CPL...153..503H}} MP3,{{cite journal |doi= 10.1002/qua.560120820 |title= Variational configuration interaction methods and comparison with perturbation theory |journal= International Journal of Quantum Chemistry |volume= 12 |issue= S11 |pages= 149–163 |year= 1977 |first1= J. A. |last1= Pople |first2= R. |last2= Seeger |first3= R. |last3= Krishnan}}{{cite journal |doi= 10.1002/qua.560100802 |title= Theoretical models incorporating electron correlation |journal= International Journal of Quantum Chemistry |volume= 10 |issue= S10 |pages= 1–19 |year= 1976 |first1= John A. |last1= Pople |first2= J. Stephen |last2= Binkley |first3= Rolf |last3= Seeger}} MP4,{{cite journal |author1=Krishnan Raghavachari |author2=John A. Pople |name-list-style=amp |title= Approximate fourth-order perturbation theory of the electron correlation energy |journal= International Journal of Quantum Chemistry |volume= 14 |issue=1 |pages= 91–100 |date= 1978 |doi= 10.1002/qua.560140109}} RI-MP2{{cite journal |author1=Martin Feyereisena, George Fitzgeralda |author2=Andrew Komornickib |name-list-style=amp |title= Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods |journal= Chemical Physics Letters |volume= 208 |issue= 5–6 |pages= 359–363 |publisher= Elsevier |date= 1993 |doi= 10.1016/0009-2614(93)87156-W |bibcode= 1993CPL...208..359F}}{{cite journal |author1=Florian Weigend |author2=Marco Häser |name-list-style=amp |title= RI-MP2: first derivatives and global consistency |journal= Theoretical Chemistry Accounts |volume= 97 |issue= 1–4 |pages= 331–340 |publisher= Springer Berlin / Heidelberg |date=1997 |doi= 10.1007/s002140050269|s2cid=97649855 }}{{cite journal |author1=Robert A. Distasio J.R. |author2=Ryan P. Steele |author3=Young Min Rhee |author4=Yihan Shao |author5=Martin Head-Gordon |name-list-style=amp |title= An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis |journal= Journal of Computational Chemistry |volume= 28 |pages= 839–856 |date= 2007 |doi= 10.1002/jcc.20604 |issue= 5 |pmid=17219361|s2cid=8438511 }}
  • Excited state methods.
  • ''Time-dependent density functional theory (TDDFT){{cite journal |author1=Erich Runge |author2=E. K. U. Gross |name-list-style=amp |title= Density-Functional Theory for Time-Dependent Systems |journal= Physical Review Letters |volume= 52 |pages= 997–1000 |publisher= American Physical Society |date= 1984 |doi= 10.1103/PhysRevLett.52.997 |issue= 12 |bibcode=1984PhRvL..52..997R}}{{cite journal |title= Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character|author1=So Hirata |author2=Martin Head-Gordon |name-list-style=amp |journal= Chemical Physics Letters |volume= 302 |issue= 5–6 |pages= 375–382 |publisher= Elsevier |year= 1999 |doi= 10.1016/S0009-2614(99)00137-2 |bibcode=1999CPL...302..375H}}
  • Configuration interaction: CIS,{{cite journal |author1=David Maurice |author2=Martin Head-Gordon |name-list-style=amp |title= Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone |journal= Molecular Physics |volume= 96 |pages= 1533–1541 |publisher= Taylor & Francis |date= 1999 |doi= 10.1080/00268979909483096 |issue= 10 |bibcode=1999MolPh..96.1533M}} CIS(D),{{cite journal |author1=Martin Head-Gordon |author2=Rudolph J. Rico |author3=Manabu Oumi |author4=Timothy J. Lee |name-list-style=amp |title= A doubles correction to electronic excited states from configuration interaction in the space of single substitutions |journal= Chemical Physics Letters |volume= 219 |issue=1–2 |pages= 21–29 |publisher= Elsevier |year= 1994 |doi= 10.1016/0009-2614(94)00070-0 |bibcode=1994CPL...219...21H|url=https://zenodo.org/record/1253844 }} QCIS(D),{{cite journal |title= Quadratic configuration interaction. A general technique for determining electron correlation energies |author1=John A. Pople |author2=Martin Head-Gordon |author3=Krishnan Raghavachari |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 87 |pages= 5968–35975 |publisher= American Institute of Physics |year= 1987 |doi= 10.1063/1.453520 |issue= 10 |bibcode=1987JChPh..87.5968P}} quadratic configuration interaction (QCISD(T)), RI-CIS(D){{cite journal |last= Rhee |first= Young Min |author2=Martin Head-Gordon |title= Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods |journal= The Journal of Physical Chemistry A |volume= 111 |pages= 5314–5326 |publisher= ACS Publications |date= 2007 |doi= 10.1021/jp068409j |pmid=17521172 |issue= 24|bibcode= 2007JPCA..111.5314R |s2cid= 20103672 |url= https://digital.library.unt.edu/ark:/67531/metadc925761/ }}
  • Quantum chemistry composite methods, thermochemical recipes.
  • T1, G2,{{cite journal |author1=Larry A. Curtiss |author2=Krishnan Raghavachari |author3=Gary W. Trucks |author4=John A. Pople |name-list-style=amp |title= Gaussian-2 theory for molecular energies of first- and second-row compounds |journal= The Journal of Chemical Physics |volume= 94 |pages= 7221–7231 |publisher= The American Institute of Physics |date= 1991 |doi= 10.1063/1.460205 |issue= 11 |bibcode=1991JChPh..94.7221C|doi-access= free }} G3,{{cite journal |author1=Larry A. Curtiss |author2=Krishnan Raghavachari |author3=Paul C. Redfern |author4=Vitaly Rassolov |author5=John A. Pople |name-list-style=amp |title= Gaussian-3 (G3) theory for molecules containing first and second-row atoms |journal= The Journal of Chemical Physics |volume= 109 |pages= 7764–7776 |publisher= The American Institute of Physics |date= 1998 |doi= 10.1063/1.477422 |issue= 18 |bibcode=1998JChPh.109.7764C}} G3(MP2)

Tasks performed

Available computational models provide molecular, thermodynamic, QSAR, atomic, graphical, and spectral properties. A calculation dialogue provides access to the following computational tasks:

  • Energy[http://downloads.wavefun.com/Spartan14Manual.pdf Spartan Tutorial & User's Guide] {{cite book |last1= Hehre |first1= Warren J. |last2=Ohlinger |first2=William S. |title= Spartan'14 Tutorial and User's Guide |publisher= Wavefunction, Inc. |location= Irvine, California|year= 2013}} – For a given geometry, provides energy and associated properties of a molecule or system. If quantum chemical models are employed, the wave function is calculated.
  • Equilibrium molecular geometry[http://www.wavefun.com/support/AGuidetoMM.pdf] An assessment of most computational models is available. {{cite book |last= Hehre |first= Warren J. |title= A Guide to Molecular Mechanics and Quantum Chemical Calculations |publisher= Wavefunction, Inc. |year= 2003 |location= Irvine, California |isbn= 1-890661-06-6}} - Locates the nearest local minimum and provides energy and associated properties.
  • Transition state geometry - Locates the nearest first-order saddle point (a maximum in a single dimension and minima in all others) and provides energy and associated properties.
  • Equilibrium conformer – Locates lowest-energy conformation. Often performed before calculating structure using a quantum chemical model.
  • Conformer distribution – Obtains a selection of low-energy conformers. Commonly used to identify the shapes a specific molecule is likely to adopt and to determine a Boltzmann distribution for calculating average molecular properties.
  • Conformer library – Locates lowest-energy conformer and associates this with a set of conformers spanning all shapes accessible to the molecule without regard to energy. Used to build libraries for similarity analysis.
  • Energy profile – Steps a molecule or system through a user defined coordinate set, providing equilibrium geometries for each step (subject to user-specified constraints).
  • Similarity analysis – quantifies the likeness of molecules (and optionally their conformers) based on either structure or chemical function (Hydrogen bond acceptors–donors, positive–negative ionizables, hydrophobes, aromatics). Quantifies likeness of a molecule (and optionally its conformers) to a pharmacophore.

Graphical user interface

The software contains an integrated graphical user interface. Touch screen operations are supported for Windows 7 and 8 devices. Construction of molecules in 3D is facilitated with molecule builders (included are organic, inorganic, peptide, nucleotide, and substituent builders). 2D construction is supported for organic molecules with a 2D sketch palette. The Windows version interface can access ChemDraw; which versions 9.0 or later may also be used for molecule building in 2D. A calculations dialogue is used for specification of task and computational method. Data from calculations are displayed in dialogues, or as text output. Additional data analysis, including linear regression, is possible from an internal spreadsheet.

Graphical models

Image:ESPMapFullerene.jpg (C60), the blue area inside the molecule is an area of positive charge (relative to the superstructure, providing a pictorial explanation for fullerene's ability to encapsulate negatively charged species).]]

Graphical models, especially molecular orbitals, electron density, and electrostatic potential maps, are a routine means of molecular visualization in chemistry education.{{cite journal |title= Teaching Chemistry with Electron Density Models |author1=Alan J. Shusterman |author2=Gwendolyn P. Shusterman |name-list-style=amp |journal= The Journal of Chemical Education |volume= 74 |pages= 771–775 |publisher= ACS Publications |year= 1997 |doi= 10.1021/ed074p771 |issue= 7 |bibcode=1997JChEd..74..771S}}{{cite book |last= Hehre |first= Warren J. |author2=Alan Shusterman |author3=Janet Nelson |title= Molecular Modeling Workbook for Organic Chemistry |publisher= Wavefunction, Inc. |year= 1998 |isbn= 1-890661-06-6}}{{cite book |last= Smith |first= Michael B.|title= Organic Synthesis, 3rd Edition |pages= CH.2 & CH.11 modeling problems |publisher= Wavefunction, Inc. |year= 2010 |isbn= 978-1-890661-40-3}}{{cite journal |title= Looking Beyond Lewis Structures: A General Chemistry Modeling Experiment Focusing on Physical Properties and Geometry |author1=Kimberly J. Linenberger |author2=Renee S. Cole |author3=Somnath Sarkar |name-list-style=amp |journal= The Journal of Chemical Education |volume= 88 |pages= 962–965 |publisher= ACS Publications |year= 2011 |doi= 10.1021/ed100727r |issue= 7 |bibcode=2011JChEd..88..962L}}{{cite journal |author1=Hyosub Kim |author2=Segun Sulaimon |author3=Sandra Menezes |author4=Anne Son |author5=Warren J. C. Menezes |name-list-style=amp |title= A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling |journal= The Journal of Chemical Education |volume= 88 |pages= 1389–1393 |publisher= ACS Publications |year= 2011 |issue=10 |doi= 10.1021/ed100824u|bibcode= 2011JChEd..88.1389K}}

  • Surfaces:
  • Molecular orbitals (highest occupied, lowest unoccupied, and others)
  • Electron density – The density, ρ(r), is a function of the coordinates r, defined such that ρ(r)dr is the number of electrons inside a small volume dr. This is what is measured in an X-ray diffraction experiment. The density may be portrayed in terms of an isosurface (isodensity surface) with the size and shape of the surface being given by the value (or percentage of enclosure) of the electron density.
  • Spin density – The density, ρspin(r), is defined as the difference in electron density formed by electrons of α spin, ρα(r), and the electron density formed by electrons of β spin, ρβ(r). For closed-shell molecules (in which all electrons are paired), the spin density is zero everywhere. For open-shell molecules (in which one or more electrons are unpaired), the spin density indicates the distribution of unpaired electrons. Spin density is an indicator of reactivity of radicals.
  • Van der Waals radius (surface)
  • Solvent accessible surface area
  • Electrostatic potential – The potential, εp, is defined as the energy of interaction of a positive point charge located at p with the nuclei and electrons of a molecule. A surface for which the electrostatic potential is negative (a negative potential surface) delineates regions in a molecule which are subject to electrophilic attack.
  • Composite surfaces (maps):
  • Electrostatic potential map (electrophilic indicator) – The most commonly employed property map is the electrostatic potential map. This gives the potential at locations on a particular surface, most commonly a surface of electron density corresponding to overall molecular size.
  • Local ionization potential map – Is defined as the sum over orbital electron densities, ρi(r) times absolute orbital energies, ∈i, and divided by the total electron density, ρ(r). The local ionization potential reflects the relative ease of electron removal ("ionization") at any location around a molecule. For example, a surface of "low" local ionization potential for sulfur tetrafluoride demarks the areas which are most easily ionized.
  • LUMO map (nucleophilic indicator) – Maps of molecular orbitals may also lead to graphical indicators. For example, the LUMO map, wherein the (absolute value) of the lowest-unoccupied molecular orbital (the LUMO) is mapped onto a size surface (again, most commonly the electron density), providing an indication of nucleophilic reactivity.

Spectral calculations

Image:IR Spectra phenyl 9-acridinecarboxylate.PNG

{{multiple image

|width = 107

|footer = The molecule phenyl 9-acridinecarboxylate.

|image1 = Phenyl 9-acridinecarboxylate 2D.PNG

|caption1= 2D rendering

|image2 = Phenyl 9-acridinecarboxylate 3D.png

|caption2= 3D rendering}}

Available spectra data and plots for:

  • Infrared spectroscopy (IR) spectra
  • Fourier transform spectroscopy (FT-IR){{cite journal |title= Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors |author1=Anthony P. Scott |author2=Leo Radom |name-list-style=amp |journal= The Journal of Physical Chemistry |volume= 100 |pages= 16502–16513 |publisher= ACS Publications |year= 1996 |doi= 10.1021/jp960976r |issue= 41}}
  • Raman spectroscopy (IR){{cite journal |title= The prediction of Raman spectra by density functional theory. Preliminary findings |author1=Benny G. Johnson |author2=Jan Florián |name-list-style=amp |journal= Chemical Physics Letters |volume= 47 |issue= 1–2 |pages= 120–125 |publisher= Elsevier |year= 1995 |doi= 10.1016/0009-2614(95)01186-9|bibcode= 1995CPL...247..120J}}
  • Nuclear magnetic resonance (NMR) spectra
  • 1H chemical shifts{{cite journal |title =Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory |author1=Jorg Kussman |author2=Christian Ochsenfeld |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 127 |pages= 054103 |publisher= American Institute of Physics |year= 2007 |issue=5 |doi= 10.1063/1.2749509 |pmid=17688330 |bibcode= 2007JChPh.127e4103K}}{{cite journal |title= Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations |author1=Krzysztof Wolinski |author2=James F. Hinton |author3=Peter Pulay |journal= Journal of the American Chemical Society |volume= 112 |pages= 8251–8260 |publisher= ACS Publications |year= 1990 |doi= 10.1021/ja00179a005 |issue= 23}} and coupling constants (empirical)
  • 13C chemical shifts, Boltzmann averaged shifts, and 13C DEPT spectra
  • 2D H vs H Spectra
  • COSY{{cite book |last= Silverstein |first= Robert M.|title= Spectroscopy Identification of Organic Compounds |author2=Francis X. Webster |author3=David J. Kiemle |pages= 250–254, 259, 267 |publisher= John Wiley & Sons, Inc. |year= 2005 |isbn= 978-0-471-39362-7}} plots
  • 2D C vs H Spectra
  • Heteronuclear single-quantum correlation spectroscopy (HSQC) spectra{{cite book |last= Keeler |first= James |title= Understanding NMR Spectroscopy |pages= 209–215 |publisher= John Wiley & Sons, Inc. |year= 2010 |isbn= 978-0-470-74608-0}}
  • HMBC spectra{{cite book |last= Silverstein |first= Robert M.|title= Spectroscopy Identification of Organic Compounds |author2=Francis X. Webster |author3=David J. Kiemle |pages= 254–263 |publisher= John Wiley & Sons, Inc. |year= 2005 |isbn= 978-0-471-39362-7}}
  • UV/vis Spectra{{cite journal |title= Quadratic configuration interaction. A general technique for determining electron correlation energies |author1=John A. Pople |author2=Martin Head-Gordon |author3=Krishnan Raghavachari |name-list-style=amp |journal= The Journal of Chemical Physics |volume= 87 |pages= 5968–35975 |publisher= American Institute of Physics |year= 1987 |doi= 10.1063/1.453520 |issue= 10 |bibcode=1987JChPh..87.5968P}}

Experimental spectra may be imported for comparison with calculated spectra: IR and UV/vis spectra in Joint Committee on Atomic and Molecular Physical Data (JCAMP){{cite journal |title= JCAMP-DX: A Standard Form for Exchange of Infrared Spectra in Computer Readable Form |last= McDonald |first= R. S. |author2=Paul A. Wilks |journal= Applied Spectroscopy |volume= 42 |pages= 151–162 |publisher= Society for Applied Spectroscopy |date= 1988 |doi= 10.1366/0003702884428734 |issue= 1|bibcode= 1988ApSpe..42..151M|s2cid= 97461751 }} (.dx) format and NMR spectra in Chemical Markup Language (.cml) format. Access to public domain spectral databases is available for IR, NMR, and UV/vis spectra.

Databases

Spartan accesses several external databases.

  • Quantum chemical calculations databases:
  • Spartan Spectra & Properties Database (SSPD) – a set of about 252,000 molecules, with structures, energies, NMR and IR spectra, and wave functions calculated using the EDF2 density functional theory with the 6-31G* basis set.
  • Spartan Molecular Database (SMD) – a set of about 100,000 molecules calculated from following models:
  • Hartree–Fock with 3-21G, 6-31G*, and 6-311+G** basis sets{{cite journal|last=Ditchfield|first=R|author2=Hehre, W.J |author3=Pople, J. A. |title=Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules|journal=J. Chem. Phys.|year=1971|volume=54|issue=2|pages=724–728|doi=10.1063/1.1674902|bibcode= 1971JChPh..54..724D}}
  • B3LYP density functional with 6-31G* and 6-311+G** basis sets
  • EDF1 density functional with 6-31G* basis set
  • MP2 with 6-31G* and 6-311+G** basis sets
  • G3(MP2)
  • T1
  • Experimental databases:
  • NMRShiftDB[http://nmrshiftdb.nmr.uni-koeln.de] NMRShiftDB. – an open-source database of experimental 1H and 13C chemical shifts.
  • Cambridge Structural Database (CSD){{cite journal|last=Allen|first=Frank|title=The Cambridge Structural Database: a quarter of a million crystal structures and rising|journal=Acta Crystallogr. B|year=2002|volume=58|issue=3|pages=380–388|doi=10.1107/S0108768102003890|pmid=12037359|doi-access=free}} - a large repository of small molecule organic and inorganic experimental crystal structures of about 600,000 entries.
  • NIST database of experimental IR and UV/vis spectra.

Major release history

  • 1991 Spartan version 1 Unix
  • 1993 Spartan version 2 Unix
  • 1994 Mac Spartan Macintosh
  • 1995 Spartan version 3 Unix
  • 1995 PC Spartan Windows
  • 1996 Mac Spartan Plus Macintosh
  • 1997 Spartan version 4 Unix
  • 1997 PC Spartan Plus Windows
  • 1999 Spartan version 5 Unix
  • 1999 PC Spartan Pro Windows
  • 2000 Mac Spartan Pro Macintosh
  • 2002 Spartan'02 Unix, Linux, Windows, Mac

=Windows, Macintosh, Linux versions =

  • 2004 Spartan'04
  • 2006 Spartan'06
  • 2008 Spartan'08
  • 2010 Spartan'10
  • 2013 Spartan'14
  • 2016 Spartan'16
  • 2018 Spartan'18
  • 2021 Spartan'20
  • 2024 Spartan'24

See also

References

{{Reflist|30em}}