Sphalerite
{{Short description|Zinc-iron sulfide mineral}}
{{Redirect|Zincblende|crystal structure|Zincblende (crystal structure)}}
{{Use American English|date=March 2021}}
{{Infobox mineral
| name = Sphalerite
| category = Sulfide mineral
| image = Sphalerite - Creede, Mineral County, Colorado, USA.jpg
| imagesize = 275px
| caption = Black crystals of sphalerite with minor chalcopyrite and calcite
| formula = {{chem2|(Zn,Fe)S}}
| molweight =
| strunz = 2.CB.05a
| dana = 02.08.02.01
| system = Cubic
| class = Hextetrahedral ({{overline|4}}3m)
H-M symbol: ({{overline|4}} 3m)
| symmetry = F{{overline|4}}3m (No. 216)
| unit cell = a = 5.406 Å; Z = 4
| color = Light to dark brown, red-brown, yellow, red, green, light blue, black and colourless.
| habit = Euhedral crystals – occurs as well-formed crystals showing good external form. Granular – generally occurs as anhedral to subhedral crystals in matrix.
| cleavage = perfect dodecahedral on [011]
| twinning = Simple contact twins or complex lamellar forms, twin axis [111]
| fracture = Uneven to conchoidal
| mohs = 3.5–4
| luster = Adamantine, resinous, greasy
| refractive = nα = 2.369
| opticalprop = Isotropic
| birefringence =
| pleochroism =
| streak = brownish white, pale yellow
| gravity = 3.9–4.2
| melt =
| fusibility =
| diagnostic =
| solubility =
| diaphaneity = Transparent to translucent, opaque when iron-rich
| other = non-radioactive, non-magnetic, fluorescent and triboluminescent.
| references = {{WebMineral |url=http://webmineral.com/data/Sphalerite.shtml |name=Sphalerite |access-date=2011-06-20}}{{Mindat |id=3727 |name=Sphalerite |access-date=2011-06-20}}{{cite web |last1=Anthony |first1=John W. |last2=Bideaux |first2=Richard A. |last3=Bladh |first3=Kenneth W. |last4=Nichols |first4=Monte C. |title=Sphalerite |url=http://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |website=Handbook of Mineralogy |publisher=Mineral Data Publishing |access-date=14 March 2022 |date=2005}}
| SMILES = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
| Jmol = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
}}
Sphalerite is a sulfide mineral with the chemical formula {{chem2|(Zn, Fe)S}}.{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|bibcode=1999RoMin..74..220M |issn=0035-7529|via=Scholars Portal Journals|url-access=subscription}} It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite (and other sulfides), calcite, dolomite, quartz, rhodochrosite, and fluorite.{{Cite book|last=Nesse|first=William D.|url=https://www.worldcat.org/oclc/817795500|title=Introduction to optical mineralogy|publisher=Oxford University Press|year=2013|isbn=978-0-19-984627-6|edition=4th|location=New York|pages=121|oclc=817795500}}
German geologist Ernst Friedrich Glocker discovered sphalerite in 1847, naming it based on the Greek word sphaleros, meaning "deceiving", due to the difficulty of identifying the mineral.{{cite book |last=Glocker |first=Ernst Friedrich |author-link=Ernst Friedrich Glocker |url=http://worldcat.org/oclc/995480390 |title=Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus. |oclc=995480390}}
In addition to zinc, sphalerite is an ore of cadmium, gallium, germanium, and indium. Miners have been known to refer to sphalerite as zinc blende, black-jack, and ruby blende.{{Cite book|last=Richard Rennie and Jonathan Law|url=https://www.worldcat.org/oclc/936373100|title=A dictionary of chemistry|publisher=Oxford University Press|year=2016|isbn=978-0-19-178954-0|edition=7th|location=Oxford|pages=|oclc=936373100}} Marmatite is an opaque black variety with a high iron content.{{Cite journal|last1=Zhou|first1=Jiahui|last2=Jiang|first2=Feng|last3=Li|first3=Sijie|last4=Zhao|first4=Wenqing|last5=Sun|first5=Wei|last6=Ji|first6=Xiaobo|last7=Yang|first7=Yue|date=2019|title=Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries|url=https://linkinghub.elsevier.com/retrieve/pii/S0013468619315476|journal=Electrochimica Acta|language=en|volume=321|page=134676|doi=10.1016/j.electacta.2019.134676|s2cid=202080193|via=Elsevier SD Freedom Collection|url-access=subscription}}
Crystal habit and structure
File:Sphalerite-unit-cell-depth-fade-3D-balls.png
Sphalerite crystallizes in the face-centered cubic zincblende crystal structure,{{Cite book|last=Klein|first=Cornelis|url=https://www.worldcat.org/oclc/962853030|title=Earth materials: introduction to mineralogy and petrology|date=2017|others=Anthony R. Philpotts|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge, United Kingdom|oclc=962853030}} which was named after the mineral. This structure is a member of the hextetrahedral crystal class (space group F{{overline|4}}3m). In the crystal structure, both the sulfur and the zinc or iron ions occupy the points of a face-centered cubic lattice, with the two lattices displaced from each other such that the zinc and iron are tetrahedrally coordinated to the sulfur ions, and vice versa.{{cite book |last1=Klein |first1=Cornelis |last2=Hurlbut |first2=Cornelius S. Jr. |title=Manual of mineralogy : (after James D. Dana) |date=1993 |publisher=Wiley |location=New York |isbn=047157452X |edition=21st |pages=211–212}} Minerals similar to sphalerite include those in the sphalerite group, consisting of sphalerite, colaradoite, hawleyite, metacinnabar, stilleite and tiemannite.{{Cite journal|last1=Cook|first1=Robert B.|date=2003|title=Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2003.9926742|journal=Rocks & Minerals|language=en|volume=78|issue=5|pages=330–334|doi=10.1080/00357529.2003.9926742|bibcode=2003RoMin..78..330C |s2cid=130762310|issn=0035-7529|url-access=subscription}} The structure is closely related to the structure of diamond. The hexagonal polymorph of sphalerite is wurtzite, and the trigonal polymorph is matraite. Wurtzite is the higher temperature polymorph, stable at temperatures above {{convert|1020|C||sp=us}}.{{Cite book|last=Deer|first=W. A.|url=https://www.worldcat.org/oclc/858884283|title=An introduction to the rock-forming minerals|date=2013|others=R. A. Howie, J. Zussman|isbn=978-0-903056-27-4|edition=3rd|location=London|oclc=858884283}} The lattice constant for zinc sulfide in the zinc blende crystal structure is 0.541 nm.[http://www.icdd.com/ International Centre for Diffraction Data reference 04-004-3804], ICCD reference 04-004-3804. Sphalerite has been found as a pseudomorph, taking the crystal structure of galena, tetrahedrite, barite and calcite.{{Cite book|last=Kloprogge|first=J. Theo|url=https://www.worldcat.org/oclc/999727666|title=Photo atlas of mineral pseudomorphism|date=2017|others=Robert M. Lavinsky|isbn=978-0-12-803703-4|location=Amsterdam, Netherlands|oclc=999727666}} Sphalerite can have Spinel Law twins, where the twin axis is [111].
The chemical formula of sphalerite is {{chem2|(Zn,Fe)S}}; the iron content generally increases with increasing formation temperature and can reach up to 40%. The material can be considered a ternary compound between the binary endpoints ZnS and FeS with composition ZnxFe(1-x)S, where x can range from 1 (pure ZnS) to 0.6.{{cn|date=April 2024}}
All natural sphalerite contains concentrations of various impurities, which generally substitute for zinc in the cation position in the lattice; the most common cation impurities are cadmium, mercury and manganese, but gallium, germanium and indium may also be present in relatively high concentrations (hundreds to thousands of ppm).{{Cite journal|last1=Cook|first1=Nigel J.|last2=Ciobanu|first2=Cristiana L.|last3=Pring|first3=Allan|last4=Skinner|first4=William|last5=Shimizu|first5=Masaaki|last6=Danyushevsky|first6=Leonid|last7=Saini-Eidukat|first7=Bernhardt|last8=Melcher|first8=Frank|date=2009|title=Trace and minor elements in sphalerite: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0016703709003263|journal=Geochimica et Cosmochimica Acta|language=en|volume=73|issue=16|pages=4761–4791|doi=10.1016/j.gca.2009.05.045|bibcode=2009GeCoA..73.4761C|url-access=subscription}}{{Cite journal|last1=Frenzel|first1=Max|last2=Hirsch|first2=Tamino|last3=Gutzmer|first3=Jens|date=July 2016|title=Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis|journal=Ore Geology Reviews|volume=76|pages=52–78|doi=10.1016/j.oregeorev.2015.12.017|bibcode=2016OGRv...76...52F }} Cadmium can replace up to 1% of zinc and manganese is generally found in sphalerite with high iron abundances. Sulfur in the anion position can be substituted for by selenium and tellurium. The abundances of these impurities are controlled by the conditions under which the sphalerite formed; formation temperature, pressure, element availability and fluid composition are important controls.
Properties
= Physical properties =
Sphalerite possesses perfect dodecahedral cleavage, having six cleavage planes.{{Cite book|last1=Klein|first1=Cornelis|url=https://www.worldcat.org/oclc/975051556|title=Earth materials : introduction to mineralogy and petrology|last2=Philpotts|first2=Anthony|publisher=Cambridge University Press|year=2017|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge|oclc=975051556}} In pure form, it is a semiconductor, but transitions to a conductor as the iron content increases.{{cite journal |last1=Deng |first1=Jiushuai |last2=Lai |first2=Hao |last3=Chen |first3=Miao |last4=Glen |first4=Matthew |last5=Wen |first5=Shuming |last6=Zhao |first6=Biao |last7=Liu |first7=Zilong |last8=Yang |first8=Hua |last9=Liu |first9=Mingshi |last10=Huang |first10=Lingyun |last11=Guan |first11=Shiliang |last12=Wang |first12=Ping |title=Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study |journal=Minerals Engineering |date=June 2019 |volume=136 |pages=168–174 |doi=10.1016/j.mineng.2019.02.012|bibcode=2019MiEng.136..168D |s2cid=182111130 }} It has a hardness of 3.5 to 4 on the Mohs scale of mineral hardness.
It can be distinguished from similar minerals by its perfect cleavage, its distinctive resinous luster, and the reddish-brown streak of the darker varieties.{{sfn|Klein|Hurlbut|1993|p=357}}
= Optical properties =
File:Sphalerite fluorescing.jpg
Pure zinc sulfide is a wide-bandgap semiconductor, with bandgap of about 3.54 electron volts, which makes the pure material transparent in the visible spectrum. Increasing iron content will make the material opaque, while various impurities can give the crystal a variety of colors.Hobart M. King, [https://geology.com/minerals/sphalerite.shtml Sphalerite], geology.com. Retrieved 22 Feb. 2022. In thin section, sphalerite exhibits very high positive relief and appears colorless to pale yellow or brown, with no pleochroism.
The refractive index of sphalerite (as measured via sodium light, average wavelength 589.3 nm) ranges from 2.37 when it is pure ZnS to 2.50 when there is 40% iron content. Sphalerite is isotropic under cross-polarized light, however sphalerite can experience birefringence if intergrown with its polymorph wurtzite; the birefringence can increase from 0 (0% wurtzite) up to 0.022 (100% wurtzite).
Depending on the impurities, sphalerite will fluoresce under ultraviolet light. Sphalerite can be triboluminescent.{{Cite web |date=2005 |title=Sphalerite |url=https://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |access-date=2022-09-20 |website=Handbook of Mineralogy}} Sphalerite has a characteristic triboluminescence of yellow-orange. Typically, specimens cut into end-slabs are ideal for displaying this property.{{cn|date=April 2024}}
Varieties
Gemmy, colorless to pale green sphalerite from Franklin, New Jersey (see Franklin Furnace), are highly fluorescent orange and/or blue under longwave ultraviolet light and are known as cleiophane, an almost pure ZnS variety.{{Cite book|last=Manutchehr-Danai|first=Mohsen|url=https://www.worldcat.org/oclc/646793373|title=Dictionary of gems and gemology|publisher=Springer-Verlag, Berlin, Heidelberg|year=2009|isbn=9783540727958|edition=3rd|location=New York|pages=|oclc=646793373}} Cleiophane contains less than 0.1% of iron in the sphalerite crystal structure. Marmatite or christophite is an opaque black variety of sphalerite and its coloring is due to high quantities of iron, which can reach up to 25%; marmatite is named after Marmato mining district in Colombia and christophite is named for the St. Christoph mine in Breitenbrunn, Saxony. Both marmatite and cleiophane are not recognized by the International Mineralogical Association (IMA).{{Cite web|title=International Mineralogical Association – Commission on New Minerals, Nomenclature and Classification|url=http://cnmnc.main.jp/|access-date=2021-02-25|website=cnmnc.main.jp}} Red, orange or brownish-red sphalerite is termed ruby blende or ruby zinc, whereas dark colored sphalerite is termed black-jack.
Deposit types
Sphalerite is amongst the most common sulfide minerals, and it is found worldwide and in a variety of deposit types. The reason for the wide distribution of sphalerite is that it appears in many types of deposits; it is found in skarns,{{Cite journal|last1=Ye|first1=Lin|last2=Cook|first2=Nigel J.|last3=Ciobanu|first3=Cristiana L.|last4=Yuping|first4=Liu|last5=Qian|first5=Zhang|last6=Tiegeng|first6=Liu|last7=Wei|first7=Gao|last8=Yulong|first8=Yang|last9=Danyushevskiy|first9=Leonid|date=2011|title=Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0169136811000217|journal=Ore Geology Reviews|language=en|volume=39|issue=4|pages=188–217|doi=10.1016/j.oregeorev.2011.03.001|bibcode=2011OGRv...39..188Y |url-access=subscription}} hydrothermal deposits,{{Cite journal|last1=Knorsch|first1=Manuel|last2=Nadoll|first2=Patrick|last3=Klemd|first3=Reiner|date=2020|title=Trace elements and textures of hydrothermal sphalerite and pyrite in Upper Permian (Zechstein) carbonates of the North German Basin|url=https://linkinghub.elsevier.com/retrieve/pii/S0375674218306708|journal=Journal of Geochemical Exploration|language=en|volume=209|pages=106416|doi=10.1016/j.gexplo.2019.106416|bibcode=2020JCExp.20906416K |s2cid=210265207|url-access=subscription}} sedimentary beds,{{Cite journal|last1=Zhu|first1=Chuanwei|last2=Liao|first2=Shili|last3=Wang|first3=Wei|last4=Zhang|first4=Yuxu|last5=Yang|first5=Tao|last6=Fan|first6=Haifeng|last7=Wen|first7=Hanjie|date=2018|title=Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province, China|url=https://linkinghub.elsevier.com/retrieve/pii/S0169136817306224|journal=Ore Geology Reviews|language=en|volume=95|pages=639–648|doi=10.1016/j.oregeorev.2018.03.018|bibcode=2018OGRv...95..639Z |url-access=subscription}} volcanogenic massive sulfide deposits (VMS),{{Cite journal|last1=Akbulut|first1=Mehmet|last2=Oyman|first2=Tolga|last3=Çiçek|first3=Mustafa|last4=Selby|first4=David|last5=Özgenç|first5=İsmet|last6=Tokçaer|first6=Murat|date=2016|title=Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey)|url=https://linkinghub.elsevier.com/retrieve/pii/S016913681630004X|journal=Ore Geology Reviews|language=en|volume=76|pages=1–18|doi=10.1016/j.oregeorev.2016.01.002|bibcode=2016OGRv...76....1A }} Mississippi-valley type deposits (MVT),{{Cite journal|last1=Nakai|first1=Shun'ichi|last2=Halliday|first2=Alex N|last3=Kesler|first3=Stephen E|last4=Jones|first4=Henry D|last5=Kyle|first5=J.Richard|last6=Lane|first6=Thomas E|date=1993|title=Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits|url=https://linkinghub.elsevier.com/retrieve/pii/0016703793904408|journal=Geochimica et Cosmochimica Acta|language=en|volume=57|issue=2|pages=417–427|doi=10.1016/0016-7037(93)90440-8|bibcode=1993GeCoA..57..417N|hdl=2027.42/31084|hdl-access=free}}{{Cite journal|last1=Viets|first1=John G.|last2=Hopkins|first2=Roy T.|last3=Miller|first3=Bruce M.|date=1992|title=Variations in minor and trace metals in sphalerite from mississippi valley-type deposits of the Ozark region; genetic implications|url=http://pubs.geoscienceworld.org/economicgeology/article/87/7/1897/21105/Variations-in-minor-and-trace-metals-in-sphalerite|journal=Economic Geology|language=en|volume=87|issue=7|pages=1897–1905|doi=10.2113/gsecongeo.87.7.1897|bibcode=1992EcGeo..87.1897V |issn=1554-0774|url-access=subscription}} granite and coal.{{Cite journal|last1=Hatch|first1=J. R.|last2=Gluskoter|first2=H. J.|last3=Lindahl|first3=P. C.|date=1976|title=Sphalerite in coals from the Illinois Basin|url=http://pubs.geoscienceworld.org/economicgeology/article/71/3/613/18771/Sphalerite-in-coals-from-the-Illinois-Basin|journal=Economic Geology|language=en|volume=71|issue=3|pages=613–624|doi=10.2113/gsecongeo.71.3.613|bibcode=1976EcGeo..71..613H |issn=1554-0774|url-access=subscription}}
= Sedimentary exhalitive =
Approximately 50% of zinc (from sphalerite) and lead comes from Sedimentary exhalative (SEDEX) deposits, which are stratiform Pb-Zn sulfides that form at seafloor vents.{{Cite journal|last1=Kropschot|first1=S.J.|last2=Doebrich|first2=Jeff L.|date=2011|title=Zinc-The key to preventing corrosion|journal=Fact Sheet|page=13 |doi=10.3133/fs20113016|issn=2327-6932|doi-access=free|bibcode=2011usgs.rept...13K }} The metals precipitate from hydrothermal fluids and are hosted by shales, carbonates and organic-rich siltstones in back-arc basins and failed continental rifts.{{Cite book|last=Arndt|first=N. T.|url=https://www.worldcat.org/oclc/914168910|title=Metals and society : an introduction to economic geology|date=2015|others=Stephen E. Kesler, Clément Ganino|isbn=978-3-319-17232-3|edition=2nd|location=Cham|oclc=914168910}} The main ore minerals in SEDEX deposits are sphalerite, galena, pyrite, pyrrhotite and marcasite, with minor sulfosalts such as tetrahedrite-freibergite and boulangerite; the zinc + lead grade typically ranges between 10 and 20%. Important SEDEX mines are Red Dog in Alaska, Sullivan Mine in British Columbia, Mount Isa and Broken Hill in Australia and Mehdiabad in Iran.{{Cite journal|last1=Emsbo|first1=Poul|last2=Seal|first2=Robert R.|last3=Breit|first3=George N.|last4=Diehl|first4=Sharon F.|last5=Shah|first5=Anjana K.|date=2016|title=Sedimentary exhalative (SEDEX) zinc-lead-silver deposit model|journal=Scientific Investigations Report|page=11 |doi=10.3133/sir20105070n|issn=2328-0328|doi-access=free|bibcode=2016usgs.rept...11E }}
= Mississippi-Valley type =
Similar to SEDEX, Mississippi-Valley type (MVT) deposits are also a Pb-Zn deposit which contains sphalerite.{{Citation|last=Misra|first=Kula C.|title=Mississippi Valley-Type (MVT) Zinc-Lead Deposits|date=2000|url=http://dx.doi.org/10.1007/978-94-011-3925-0_13|work=Understanding Mineral Deposits|pages=573–612|place=Dordrecht|publisher=Springer Netherlands|doi=10.1007/978-94-011-3925-0_13|isbn=978-94-010-5752-3|access-date=2021-03-26|url-access=subscription}} However, they only account for 15–20% of zinc and lead, are 25% smaller in tonnage than SEDEX deposits and have lower grades of 5–10% Pb + Zn. MVT deposits form from the replacement of carbonate host rocks such as dolostone and limestone by ore minerals; they are located in platforms and foreland thrust belts. Furthermore, they are stratabound, typically Phanerozoic in age and epigenetic (form after the lithification of the carbonate host rocks).{{Citation|last=Haldar|first=S.K.|title=Mineral deposits: host rocks and genetic model|date=2020|url=http://dx.doi.org/10.1016/b978-0-12-820585-3.00009-0|work=Introduction to Mineralogy and Petrology|pages=313–348|publisher=Elsevier|doi=10.1016/b978-0-12-820585-3.00009-0|isbn=978-0-12-820585-3|s2cid=226572449|access-date=2021-03-26|url-access=subscription}} The ore minerals are the same as SEDEX deposits: sphalerite, galena, pyrite, pyrrhotite and marcasite, with minor sulfosalts. Mines that contain MVT deposits include Polaris in the Canadian arctic, Mississippi River in the United States, Pine Point in Northwest Territories, and Admiral Bay in Australia.{{Cite journal|last=Sangster|first=D F|date=1995|title=Mississippi valley-type lead-zinc|doi=10.4095/207988|doi-access=free}}
= Volcanogenic massive sulfide =
Volcanogenic massive sulfide (VMS) deposits can be Cu-Zn- or Zn-Pb-Cu-rich, and accounts for 25% of Zn in reserves. There are various types of VMS deposits with a range of regional contexts and host rock compositions; a common characteristic is that they are all hosted by submarine volcanic rocks. They form from metals such as copper and zinc being transferred by hydrothermal fluids (modified seawater) which leach them from volcanic rocks in the oceanic crust; the metal-saturated fluid rises through fractures and faults to the surface, where it cools and deposits the metals as a VMS deposit.{{Cite book|last=Roland.|first=Shanks, Wayne C. Thurston|url=http://worldcat.org/oclc/809680409|title=Volcanogenic massive sulfide occurrence model|date=2012|publisher=U.S. Dept. of the Interior, U.S. Geological Survey|oclc=809680409}} The most abundant ore minerals are pyrite, chalcopyrite, sphalerite and pyrrhotite. Mines that contain VMS deposits include Kidd Creek in Ontario, Urals in Russia, Troodos in Cyprus, and Besshi in Japan.{{Cite journal|last=du Bray|first=Edward A.|date=1995|title=Preliminary compilation of descriptive geoenvironmental mineral deposit models|journal=Open-File Report|page=61 |doi=10.3133/ofr95831|issn=2331-1258|doi-access=free|bibcode=1995usgs.rept...61D }}
= Localities =
The top producers of sphalerite include the United States, Russia, Mexico, Germany, Australia, Canada, China, Ireland, Peru, Kazakhstan and England.{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|bibcode=1999RoMin..74..220M |issn=0035-7529|url-access=subscription}}{{Cite book|chapter=Zinc|date=2003-09-02|chapter-url=https://www.taylorfrancis.com/books/9781135356118/chapters/10.4324/9780203403556-47|title=Agricultural and Mineral Commodities Year Book|pages=358–366|edition=0|publisher=Routledge|language=en|doi=10.4324/9780203403556-47|isbn=978-0-203-40355-6|access-date=2021-02-25}}
Sources of high quality crystals include:
class="wikitable"
!Place!!Country | |
Freiberg, Saxony, Neudorf, Harz Mountains | Germany |
Lengenbach Quarry, Binntal, Valais | Switzerland |
Horní Slavkov and Příbram | Czech Republic |
Rodna | Romania |
Madan, Smolyan Province, Rhodope Mountains | Bulgaria |
Aliva mine, Picos de Europa Mountains, Cantabria [Santander] Province | Spain |
Alston Moor, Cumbria | England |
Dalnegorsk, Primorskiy Kray | Russia |
Watson Lake, Yukon Territory | Canada |
Flin Flon, Manitoba | Canada |
Tri-State district including deposits near Baxter Springs, Cherokee County, Kansas; Joplin, Jasper County, Missouri and Picher, Ottawa County, Oklahoma | US |
Elmwood mine, near Carthage, Smith County, Tennessee | US |
Eagle mine, Gilman district, Eagle County, Colorado | US |
Santa Eulalia, Chihuahua | Mexico |
Naica, Chihuahua | Mexico |
Cananea, Sonora | Mexico |
Huaron | Peru |
Casapalca | Peru |
Huancavelica | Peru |
Zinkgruvan | Sweden |
Uses
= Metal ore =
Sphalerite is an important ore of zinc; around 95% of all primary zinc is extracted from sphalerite ore.{{Cite web|title=Zinc Statistics and Information|url=https://www.usgs.gov/centers/nmic/zinc-statistics-and-information|access-date=2021-02-25|website=www.usgs.gov}} However, due to its variable trace element content, sphalerite is also an important source of several other metals such as cadmium,{{Cite book|url=https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/|title=Cadmium – In: USGS Mineral Commodity Summaries|publisher=United States Geological Survey|year=2017}} gallium,{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Seifert|first3=Thomas|last4=Gutzmer|first4=Jens|date=March 2016|title=On the current and future availability of gallium|journal=Resources Policy|volume=47|pages=38–50|doi=10.1016/j.resourpol.2015.11.005|bibcode=2016RePol..47...38F }} germanium,{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Gutzmer|first3=Jens|date=2014-04-01|title=On the geological availability of germanium|journal=Mineralium Deposita|language=en|volume=49|issue=4|pages=471–486|bibcode=2014MinDe..49..471F|doi=10.1007/s00126-013-0506-z|issn=0026-4598|s2cid=129902592}} and indium{{Cite journal|last1=Frenzel|first1=Max|last2=Mikolajczak|first2=Claire|last3=Reuter|first3=Markus A.|last4=Gutzmer|first4=Jens|date=June 2017|title=Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium|journal=Resources Policy|volume=52|pages=327–335|doi=10.1016/j.resourpol.2017.04.008|bibcode=2017RePol..52..327F |doi-access=free}} which replace zinc. The ore was originally called blende by miners (from German blind or deceiving) because it resembles galena but yields no lead.{{sfn|Klein|Hurlbut|1993|p=357}}
= Brass and bronze =
The zinc in sphalerite is used to produce brass, an alloy of copper with 3–45% zinc. Major element alloy compositions of brass objects provide evidence that sphalerite was being used to produce brass by the Islamic as far back as the medieval ages between the 7th and 16th century CE.{{Cite book|last=Craddock|first=P.T.|title=Brass in the medieval Islamic world; 2000 years of zinc and brass|publisher=British Museum Publications Ltd.|year=1990|isbn=0-86159-050-3|pages=73–101}} Sphalerite may have also been used during the cementation process of brass in Northern China during the 12th–13th century CE (Jin Dynasty).{{Cite journal|last1=Xiao|first1=Hongyan|last2=Huang|first2=Xin|last3=Cui|first3=Jianfeng|date=2020|title=Local cementation brass production during 12th–13th century CE, North China: Evidences from a royal summer palace of Jin Dynasty|url=https://linkinghub.elsevier.com/retrieve/pii/S2352409X2030448X|journal=Journal of Archaeological Science: Reports|language=en|volume=34|pages=102657|doi=10.1016/j.jasrep.2020.102657|bibcode=2020JArSR..34j2657X |s2cid=229414402|url-access=subscription}} Besides brass, the zinc in sphalerite can also be used to produce certain types of bronze; bronze is dominantly copper which is alloyed with other metals such as tin, zinc, lead, nickel, iron and arsenic.{{Cite book|last=Tylecote|first=R. F.|url=https://www.worldcat.org/oclc/705004248|title=A history of metallurgy|date=2002|publisher=Maney Pub., for the Institute of Materials|others=Institute of Materials|isbn=1-902653-79-3|edition=2nd|location=London|oclc=705004248}}
= Other =
- Yule Marble – sphalerite is found as inclusions in yule marble, which is used as a building material for the Lincoln Memorial and Tomb of the Unknown.{{Cite book|last=S.|first=McGee, E.|url=http://worldcat.org/oclc/1004947563|title=Colorado Yule marble : building stone of the Lincoln Memorial : an investigation of differences in durability of the Colorado Yule marble, a widely used building stone|date=1999|publisher=U.S. Dept. of the Interior, U.S. Geological Survey|isbn=0-607-91994-9|oclc=1004947563}}
- Galvanized iron – zinc from sphalerite is used as a protective coating to prevent corrosion and rusting; it is used on power transmission towers, nails and automobiles.
- Batteries.{{Cite journal|last1=Hai|first1=Yun|last2=Wang|first2=Shuonan|last3=Liu|first3=Hao|last4=Lv|first4=Guocheng|last5=Mei|first5=Lefu|last6=Liao|first6=Libing|date=2020|title=Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries|url=http://link.springer.com/10.1007/s11837-020-04372-5|journal=JOM|language=en|volume=72|issue=12|pages=4505–4513|doi=10.1007/s11837-020-04372-5|bibcode=2020JOM....72.4505H|s2cid=224897123|issn=1047-4838|url-access=subscription}}
- Gemstone.{{Cite journal|last1=Voudouris|first1=Panagiotis|last2=Mavrogonatos|first2=Constantinos|last3=Graham|first3=Ian|last4=Giuliani|first4=Gaston|last5=Tarantola|first5=Alexandre|last6=Melfos|first6=Vasilios|last7=Karampelas|first7=Stefanos|last8=Katerinopoulos|first8=Athanasios|last9=Magganas|first9=Andreas|date=2019-07-29|title=Gemstones of Greece: Geology and Crystallizing Environments|journal=Minerals|language=en|volume=9|issue=8|pages=461|doi=10.3390/min9080461|bibcode=2019Mine....9..461V|issn=2075-163X|doi-access=free}}{{Cite journal|last1=Murphy|first1=Jack|last2=Modreski|first2=Peter|date=2002-08-01|title=A Tour of Colorado Gemstone Localities|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2002.9925639|journal=Rocks & Minerals|language=en|volume=77|issue=4|pages=218–238|doi=10.1080/00357529.2002.9925639|bibcode=2002RoMin..77..218M |s2cid=128754037|issn=0035-7529|url-access=subscription}}
Gallery
File:Sphalerite-barite (Cumberland Mine, Smith County, Tennessee, USA).jpg|Sphalerite and barite from Cumberland Mine, Tennessee, US
File:Sphalerite on dolostone (Millersville Quarry, Sandusky County, Ohio, USA).jpg|Sphalerite on dolostone, from Millersville Quarry, Ohio, US
File:Calcite-Sphalerite-elm05b.jpg|Tan crystal of calcite attached to a cluster of black sphalerite crystals
File:Sphalerite-221270.jpg|Sharp, tetrahedral sphalerite crystals with minor associated chalcopyrite from the Idarado Mine, Telluride, Ouray District, Colorado, US
File:Sphalerite-Quartz-261762.jpg|Gem quality twinned cherry-red sphalerite crystal (1.8 cm) from Hunan Province, China
File:Esfalerita (Blenda acaramelada) Áliva, Cantabria.jpg|Sphalerite crystals from Áliva, Camaleño, Cantabria (Spain)
File:Fluorite and sphalerite J1.jpg|Purple fluorite and sphalerite, from the Elmwood mine, Smith county, Tennessee, US
File:Geodized brachiopod.jpg|Sphalerite crystal in geodized brachiopod
See also
References
{{Reflist}}
Further reading
- Dana's Manual of Mineralogy {{ISBN|0-471-03288-3}}
- Webster, R., Read, P. G. (Ed.) (2000). Gems: Their sources, descriptions and identification (5th ed.), p. 386. Butterworth-Heinemann, Great Britain. {{ISBN|0-7506-1674-1}}
External links
{{Commons category|Sphalerite}}
- [https://web.archive.org/web/20081019230935/http://cst-www.nrl.navy.mil/lattice/struk/b3.html The sphalerite structure]
- [http://www.physorg.com/news85048433.html Possible relation of Sphalerite to origins of life and precursor chemicals in 'Primordial Soup']
- [http://www.minerals.net/mineral/sulfides/sphaleri/sphaleri.htm Minerals.net]
- [http://simplethinking.com/palache/sphalerite.stm Minerals of Franklin, NJ]
{{ores}}
{{Authority control}}
Category:Minerals in space group 216
Category:Zincblende crystal structure