Sphere packing in a sphere

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

class="wikitable"

! rowspan=2 | Number of
inner spheres

! colspan=2 | Maximum radius of inner spheres[http://oeis.org/A084829 Best packing of m>1 equal spheres in a sphere setting a new density record]

! rowspan=2 | Packing
density

! rowspan=2 | Optimality

! rowspan=2 | Arrangement

! rowspan=2 | Diagram

Exact form

! Approximate

align=center

| 1

| 1

| 1.0000

| 1

| Trivially optimal.

| Point

| 120px

align=center

| 2

| \dfrac {1} {2}

| 0.5000

| 0.25

| Trivially optimal.

| Line segment

| 120px

align=center

| 3

| 2 \sqrt {3} - 3

| 0.4641...

| 0.29988...

| Trivially optimal.

| Triangle

| 120px

align=center

| 4

| \sqrt {6} - 2

| 0.4494...

| 0.36326...

| Proven optimal.

| Tetrahedron

| 120px

align=center

| 5

| \sqrt {2} - 1

| 0.4142...

| 0.35533...

| Proven optimal.

| Trigonal bipyramid

| 120px

align=center

| 6

| \sqrt {2} - 1

| 0.4142...

| 0.42640...

| Proven optimal.

| Octahedron

| 120px

align=center

| 7

| \frac {1}{\frac {\sqrt {3} + 2 \cos \left( \frac {\pi}{18} \right)}{\sqrt {2 + 2 \sqrt {3} \cos \left( \frac {\pi}{18} \right)}} + 1}

| 0.3859...

| 0.40231...

| Proven optimal.

| Capped octahedron

| 120px

align=center

| 8

| \frac {1}{\sqrt {2 + \frac {1}{\sqrt {2}}} + 1}

| 0.3780...

| 0.43217...

| Proven optimal.

| Square antiprism

| 120px

align=center

| 9

| \frac {\sqrt {3} - 1}{2}

| 0.3660...

| 0.44134...

| Proven optimal.

| Tricapped trigonal prism

| 120px

align=center

| 10

|

| 0.3530...

| 0.44005...

| Proven optimal.

|

| 120px

align=center

| 11

| \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} }

| 0.3445...

| 0.45003...

| Proven optimal.

| Diminished icosahedron

| 120px

align=center

| 12

| \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} }

| 0.3445...

| 0.49095...

| Proven optimal.

| Icosahedron

| 120px

References

{{Reflist}}

{{Packing problem|state=collapsed}}

Category:Spheres

Category:Packing problems