Spherical pendulum

{{Short description|3-Dimensional analogue of a pendulum}}

File:Spherical pendulum Lagrangian mechanics.svg

In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass {{mvar|m}} moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.

Owing to the spherical geometry of the problem, spherical coordinates are used to describe the position of the mass in terms of {{nowrap|(r, \theta, \phi)}}, where {{mvar|r}} is fixed such that r = l.

Lagrangian mechanics

{{main|Lagrangian mechanics}}

Routinely, in order to write down the kinetic T=\tfrac{1}{2}mv^2 and potential V parts of the Lagrangian L=T-V in arbitrary generalized coordinates the position of the mass is expressed along Cartesian axes. Here, following the conventions shown in the diagram,

:x=l\sin\theta\cos\phi

:y=l\sin\theta\sin\phi

:z=l(1-\cos\theta).

Next, time derivatives of these coordinates are taken, to obtain velocities along the axes

:\dot x=l\cos\theta\cos\phi\,\dot\theta-l\sin\theta\sin\phi\,\dot\phi

:\dot y=l\cos\theta\sin\phi\,\dot\theta+l\sin\theta\cos\phi\,\dot\phi

:\dot z=l\sin\theta\,\dot\theta.

Thus,

:

v^2=\dot x ^2+\dot y ^2+\dot z ^2

=l^2\left(\dot\theta ^2+\sin^2\theta\,\dot\phi ^2\right)

and

:

T=\tfrac{1}{2}mv^2

=\tfrac{1}{2}ml^2\left(\dot\theta ^2+\sin^2\theta\,\dot\phi ^2\right)

:

V=mg\,z=mg\,l(1-\cos\theta)

The Lagrangian, with constant parts removed, is{{cite book|last=Landau|first=Lev Davidovich|title=Course of Theoretical Physics: Volume 1 Mechanics|author2=Evgenii Mikhailovich Lifshitz|publisher=Butterworth-Heinenann|year=1976|isbn=0750628960|pages=33–34}}

:

L=\frac{1}{2}

ml^2\left(

\dot{\theta}^2+\sin^2\theta\ \dot{\phi}^2

\right)

+ mgl\cos\theta.

The Euler–Lagrange equation involving the polar angle \theta

:

\frac{d}{dt}\frac{\partial}{\partial\dot\theta}L-\frac{\partial}{\partial\theta}L=0

gives

:

\frac{d}{dt}

\left(ml^2\dot{\theta}

\right)

-ml^2\sin\theta\cdot\cos\theta\,\dot{\phi}^2+

mgl\sin\theta =0

and

:

\ddot\theta=\sin\theta\cos\theta\dot\phi ^2-\frac{g}{l}\sin\theta

When \dot\phi=0 the equation reduces to the differential equation for the motion of a simple gravity pendulum.

Similarly, the Euler–Lagrange equation involving the azimuth \phi,

:

\frac{d}{dt}\frac{\partial}{\partial\dot\phi}L-\frac{\partial}{\partial\phi}L=0

gives

:

\frac{d}{dt}

\left(

ml^2\sin^2\theta

\cdot

\dot{\phi}

\right)

=0

.

The last equation shows that angular momentum around the vertical axis, |\mathbf L_z| = l\sin\theta \times ml\sin\theta\,\dot\phi is conserved. The factor ml^2\sin^2\theta will play a role in the Hamiltonian formulation below.

The second order differential equation determining the evolution of \phi is thus

:\ddot\phi\,\sin\theta = -2\,\dot\theta\,\dot{\phi}\,\cos\theta.

The azimuth \phi, being absent from the Lagrangian, is a cyclic coordinate, which implies that its conjugate momentum is a constant of motion.

The conical pendulum refers to the special solutions where \dot\theta=0 and \dot\phi is a constant not depending on time.

Hamiltonian mechanics

{{main|Hamiltonian mechanics}}

The Hamiltonian is

:H=P_\theta\dot \theta + P_\phi\dot \phi-L

where conjugate momenta are

:P_\theta=\frac{\partial L}{\partial \dot \theta}=ml^2\cdot \dot \theta

and

:P_\phi=\frac{\partial L}{\partial \dot \phi} = ml^2 \sin^2\! \theta \cdot \dot \phi.

In terms of coordinates and momenta it reads

H = \underbrace{\left[\frac{1}{2}ml^2\dot\theta^2 + \frac{1}{2}ml^2\sin^2\theta\dot \phi^2\right]}_{T} + \underbrace{ \bigg[-mgl\cos\theta\bigg]}_{V}=

{P_\theta^2\over 2ml^2}+{P_\phi^2\over 2ml^2\sin^2\theta}-mgl\cos\theta

Hamilton's equations will give time evolution of coordinates and momenta in four first-order differential equations

:\dot {\theta}={P_\theta \over ml^2}

:\dot {\phi}={P_\phi \over ml^2\sin^2\theta}

:\dot {P_\theta}={P_\phi^2\over ml^2\sin^3\theta}\cos\theta-mgl\sin\theta

:\dot {P_\phi}=0

Momentum P_\phi is a constant of motion. That is a consequence of the rotational symmetry of the system around the vertical axis.{{dubious|reason=The system is not symmetrical, rather it is rotation-invariant in the sense that its behaviour does not depend on the rotation around the vertical axis.|date=October 2021}}

Trajectory

File:SphaerischesPendelAnima.gif

Trajectory of the mass on the sphere can be obtained from the expression for the total energy

:E=\underbrace{\left[\frac{1}{2}ml^2\dot\theta^2 + \frac{1}{2}ml^2\sin^2\theta \dot \phi^2\right]}_{T}+\underbrace{ \bigg[-mgl\cos\theta\bigg]}_{V}

by noting that the horizontal component of angular momentum L_z = ml^2\sin^2\!\theta \,\dot\phi is a constant of motion, independent of time. This is true because neither gravity nor the reaction from the sphere act in directions that would affect this component of angular momentum.

Hence

:E=\frac{1}{2}ml^2\dot\theta^2 + \frac{1}{2}\frac{L_z^2}{ml^2\sin^2\theta}-mgl\cos\theta

:\left(\frac{d\theta}{dt}\right)^2=\frac{2}{ml^2}\left[E-\frac{1}{2}\frac{L_z^2}{ml^2\sin^2\theta}+mgl\cos\theta\right]

which leads to an elliptic integral of the first kind for \theta

:t(\theta)=\sqrt{\tfrac{1}{2}ml^2}\int\left[E-\frac{1}{2}\frac{L_z^2}{ml^2\sin^2\theta}+mgl\cos\theta\right]^{-\frac{1}{2}}\,d\theta

and an elliptic integral of the third kind for \phi

:\phi(\theta)=\frac{L_z}{l\sqrt{2m}}\int\sin^{-2}\theta \left[E-\frac{1}{2}\frac{L_z^2}{ml^2\sin^2\theta}+mgl\cos\theta\right]^{-\frac{1}{2}}\,d\theta.

The angle \theta lies between two circles of latitude, where

:E>\frac{1}{2}\frac{L_z^2}{ml^2\sin^2\theta}-mgl\cos\theta.

See also

References

Further reading

  • {{cite journal|first1=Alexander |last1=Weinstein|title=The spherical pendulum and complex integration

| journal= The American Mathematical Monthly| volume =49|year=1942 |number=8 |pages=521–523 |doi=10.1080/00029890.1942.11991275}}

  • {{cite journal|first=Walter | last=Kohn| title=Contour integration in the theory of the spherical pendulum and the heavy symmetrical top | journal= Transactions of the American Mathematical Society| volume =59 | number=1 | year=1946 | pages=107–131 |doi=10.2307/1990314| jstor=1990314| doi-access=free }}
  • {{cite journal|first1=M. G. |last1=Olsson |title=Spherical pendulum revisited | journal = American Journal of Physics| year=1981 | volume=49 | number=6 |pages=531–534 | doi=10.1119/1.12666|bibcode=1981AmJPh..49..531O }}
  • {{cite journal|first1=Emil | last1=Horozov| title=On the isoenergetical non-degeneracy of the spherical pendulum | journal = Physics Letters A|year=1993| volume=173| number=3 |pages=279–283 | doi=10.1016/0375-9601(93)90279-9| bibcode=1993PhLA..173..279H}}
  • {{cite journal|first1=Peter H.|last1=Richter|first2=Holger R. |last2=Dullin | first3=Holger |last3=Waalkens | first4=Jan |last4= Wiersig|title=Spherical pendulum, actions and spin|journal=J. Phys. Chem.|volume=100 |number=49|pages=19124–19135|year=1996|doi=10.1021/jp9617128|s2cid=18023607 |url=https://research.rug.nl/en/publications/8af67cd3-5599-4167-a2dd-aed857ac6bdf }}
  • {{cite journal|first1=A. S. |last1=Shiriaev |first2=H. |last2=Ludvigsen | first3=O. |last3=Egeland| title=Swinging up the spherical pendulum via stabilization of its first integrals|journal=Automatica |volume=40 | year=2004| pages=73–85| doi=10.1016/j.automatica.2003.07.009}}
  • {{cite journal|first1=Hanno |last1=Essen | first2=Nicholas | last2=Apazidis | title=Turning points of the spherical pendulum and the golden ratio | journal= European Journal of Physics| volume=30|number=2 | pages=427–432 | doi=10.1088/0143-0807/30/2/021|year=2009 |bibcode=2009EJPh...30..427E |s2cid=121216295 }}
  • {{cite journal|first1=Holger R. |last1=Dullin | title=Semi-global symplectic invariants of the spherical pendulum|journal =Journal of Differential Equations | year=2013| volume=254|number=7 | pages=2942–2963|doi=10.1016/j.jde.2013.01.018|bibcode=2013JDE...254.2942D |doi-access=free|arxiv=1108.4962}}

Category:Pendulums