Spinor bundle

{{Short description|Geometric structure}}

In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_{\mathbf S}\colon{\mathbf S}\to M\, associated to the corresponding principal bundle \pi_{\mathbf P}\colon{\mathbf P}\to M\, of spin frames over M and the spin representation of its structure group {\mathrm {Spin}}(n)\, on the space of spinors \Delta_n.

A section of the spinor bundle {\mathbf S}\, is called a spinor field.

Formal definition

Let ({\mathbf P},F_{\mathbf P}) be a spin structure on a Riemannian manifold (M, g),\,that is, an equivariant lift of the oriented orthonormal frame bundle \mathrm F_{SO}(M)\to M with respect to the double covering \rho\colon {\mathrm {Spin}}(n)\to {\mathrm {SO}}(n) of the special orthogonal group by the spin group.

The spinor bundle {\mathbf S}\, is defined {{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society | year=2000|isbn=978-0-8218-2055-1}} page 53

to be the complex vector bundle

{\mathbf S}={\mathbf P}\times_{\kappa}\Delta_n\,

associated to the spin structure {\mathbf P} via the spin representation \kappa\colon {\mathrm {Spin}}(n)\to {\mathrm U}(\Delta_n),\, where {\mathrm U}({\mathbf W})\, denotes the group of unitary operators acting on a Hilbert space {\mathbf W}.\, The spin representation \kappa is a faithful and unitary representation of the group {\mathrm {Spin}}(n).{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society | year=2000|isbn=978-0-8218-2055-1}} pages 20 and 24

See also

Notes

{{reflist}}

Further reading

  • {{Cite book | last1=Lawson | first1=H. Blaine | last2=Michelsohn |author1-link=H. Blaine Lawson| first2=Marie-Louise |author2-link=Marie-Louise Michelsohn| title=Spin Geometry | publisher=Princeton University Press | isbn=978-0-691-08542-5 | year=1989 }}
  • {{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society | year=2000|isbn=978-0-8218-2055-1}}

{{Manifolds}}

{{Tensors}}|

Category:Algebraic topology

Category:Riemannian geometry

Category:Structures on manifolds

{{differential-geometry-stub}}