Spline wavelet

{{short description|Wavelet constructed using a spline function}}

File:Animation showing images of compactly supported B spline wavelets.gif

In the mathematical theory of wavelets, a spline wavelet is a wavelet constructed using a spline function.{{cite journal|last1=Michael Unser|editor-first1=Akram |editor-first2=Andrew F. |editor-first3=Michael A. |editor-last1=Aldroubi |editor-last2=Laine |editor-last3=Unser |title=Ten good reasons for using spline wavelets|journal=Proc. SPIE Vol. 3169, Wavelets Applications in Signal and Image Processing V|series=Wavelet Applications in Signal and Image Processing V |date=1997|volume=3169 |pages=422–431|doi=10.1117/12.292801 |bibcode=1997SPIE.3169..422U |s2cid=12705597 |url=http://bigwww.epfl.ch/publications/unser9702.pdf|access-date=21 December 2014}} There are different types of spline wavelets. The interpolatory spline wavelets introduced by C.K. Chui and J.Z. Wang are based on a certain spline interpolation formula.{{cite journal|last1=Chui, Charles K, and Jian-zhong Wang|title=A cardinal spline approach to wavelets|journal=Proceedings of the American Mathematical Society|date=1991|volume=113|issue=3|pages=785–793|url=http://www.ams.org/journals/proc/1991-113-03/S0002-9939-1991-1077784-X/S0002-9939-1991-1077784-X.pdf|access-date=22 January 2015|doi=10.2307/2048616|jstor=2048616|doi-access=free}} Though these wavelets are orthogonal, they do not have compact supports. There is a certain class of wavelets, unique in some sense, constructed using B-splines and having compact supports. Even though these wavelets are not orthogonal they have some special properties that have made them quite popular.{{cite journal|last1=Charles K. Chui and Jian-Zhong Wang|title=On Compactly Supported Spline Wavelets and a Duality Principle|journal=Transactions of the American Mathematical Society|date=April 1992|volume=330|issue=2|pages=903–915|url=http://www.shsu.edu/~mth_jxw/pdfflies/CWTRAN.pdf|access-date=21 December 2014|doi=10.1090/s0002-9947-1992-1076613-3|doi-access=free}} The terminology spline wavelet is sometimes used to refer to the wavelets in this class of spline wavelets. These special wavelets are also called B-spline wavelets and cardinal B-spline wavelets.{{cite book|last1=Charles K Chui|title=An Introduction to Wavelets|date=1992|publisher=Academic Press|page=177|ref=Chui}} The Battle-Lemarie wavelets are also wavelets constructed using spline functions.{{cite book|last1=Ingrid Daubechies|title=Ten Lectures on Wavelets|url=https://archive.org/details/tenlecturesonwav0000daub|url-access=registration|date=1992|publisher=Society for Industrial and Applied Mathematics|location=Philadelphia|pages=[https://archive.org/details/tenlecturesonwav0000daub/page/146 146–153]|isbn=9780898712742 }}

Cardinal B-splines

Let n be a fixed non-negative integer. Let Cn denote the set of all real-valued functions defined over the set of real numbers such that each function in the set as well its first n derivatives are continuous everywhere. A bi-infinite sequence . . . x−2, x−1, x0, x1, x2, . . . such that xr < xr+1 for all r and such that xr approaches ±∞ as r approaches ±∞ is said to define a set of knots. A spline of order n with a set of knots {xr} is a function S(x) in Cn such that, for each r, the restriction of S(x) to the interval [xr, xr+1) coincides with a polynomial with real coefficients of degree at most n in x.

If the separation xr+1 - xr, where r is any integer, between the successive knots in the set of knots is a constant, the spline is called a cardinal spline. The set of integers Z = {. . ., -2, -1, 0, 1, 2, . . .} is a standard choice for the set of knots of a cardinal spline. Unless otherwise specified, it is generally assumed that the set of knots is the set of integers.

A cardinal B-spline is a special type of cardinal spline. For any positive integer m the cardinal B-spline of order m, denoted by Nm(x), is defined recursively as follows.

:N_1(x)=\begin{cases}1 & 0\le x <1 \\ 0 & \text{otherwise}\end{cases}

:N_m(x)=\int_0^1 N_{m-1}(x-t)dt, for m>1.

Concrete expressions for the cardinal B-splines of all orders up to 5 and their graphs are given later in this article.

Properties of the cardinal B-splines

=Elementary properties=

  1. The support of N_m(x) is the closed interval [0,m].
  2. The function N_m(x) is non-negative, that is, N_m(x)>0 for 0.
  3. \sum_{k=-\infty}^\infty N_m(x-k)=1 for all x.
  4. The cardinal B-splines of orders m and m-1 are related by the identity: N_m(x)=\frac{x}{m-1}N_{m-1}(x) + \frac{m-x}{m-1}N_{m-1}(x-1).
  5. The function N_m(x) is symmetrical about x=\frac{m}{2}, that is, N_m\left(\frac{m}{2}-x\right)=N_m\left(\frac{m}{2}+x\right).
  6. The derivative of N_m(x) is given by N_m^\prime(x)=N_{m-1}(x)-N_{m-1}(x-1).
  7. \int_{-\infty}^\infty N_m(x)\, dx =1

=Two-scale relation=

The cardinal B-spline of order m satisfies the following two-scale relation:

:N_m(x)=\sum_{k=0}^m 2^{-m+1}{m \choose k}N_m(2x-k).

=Riesz property=

The cardinal B-spline of order m satisfies the following property, known as the Riesz property: There exists two positive real numbers A and B such that for any square summable two-sided sequence \{c_k\}_{k=-\infty}^\infty and for any x,

:A \left\Vert \{c_k \} \right\Vert^2 \le \left \Vert \sum_{k=-\infty}^\infty c_k N_m(x-k) \right\Vert^2 \le B \left\Vert\{c_k\}\right\Vert^2

where \Vert \cdot \Vert is the norm in the ℓ2-space.

Cardinal B-splines of small orders

The cardinal B-splines are defined recursively starting from the B-spline of order 1, namely N_1(x), which takes the value 1 in the interval [0, 1) and 0 elsewhere. Computer algebra systems may have to be employed to obtain concrete expressions for higher order cardinal B-splines. The concrete expressions for cardinal B-splines of all orders up to 6 are given below. The graphs of cardinal B-splines of orders up to 4 are also exhibited. In the images, the graphs of the terms contributing to the corresponding two-scale relations are also shown. The two dots in each image indicate the extremities of the interval supporting the B-spline.

=Constant B-spline=

The B-spline of order 1, namely N_1(x), is the constant B-spline. It is defined by

:N_1(x)=\begin{cases}1 & 0\le x < 1 \\ 0 &\text{otherwise}\end{cases}

The two-scale relation for this B-spline is

:N_1(x)=N_1(2x)+N_1(2x-1)

class="wikitable"
style="text-align: center;" |Constant B-spline
N_1(x)
valign="top" style="background: #ffffff;" | File:BSplineOfOrder1.pngvalign="top" style="background: #ffffff;" |File:TwoScaleRelationForBSplineOfOrder1.png

=Linear B-spline=

The B-spline of order 2, namely N_2(x), is the linear B-spline. It is given by

:N_2(x)=\begin{cases}x & 0\le x < 1 \\ -x+2 & 1\le x<2 \\ 0 &\text{otherwise}\end{cases}

The two-scale relation for this wavelet is

:N_2(x)=\frac{1}{2}N_2(2x)+N_2(2x-1)+\frac{1}{2}N_2(2x-2)

class="wikitable"
style="text-align: center;" |Linear B-spline
N_2(x)
valign="top" style="background: #ffffff;" | File:CardinalBSplineOfOrder2.pngvalign="top" style="background: #ffffff;" |File:TwoScaleRelationForCardinalBSplineOfOrder2.png

=Quadratic B-spline=

The B-spline of order 3, namely N_3(x), is the quadratic B-spline. It is given by

:

N_3(x)=

\begin{cases}

\frac{1}{2}x^2 & 0\le x < 1 \\

-x^2 +3x-\frac{3}{2} & 1\le x<2 \\

\frac{1}{2}x^2 -3x + \frac{9}{2} & 2\le x<3 \\ 0 &\text{otherwise}\end{cases}

The two-scale relation for this wavelet is

:N_3(x)=\frac{1}{4}N_3(2x)+\frac{3}{4}N_3(2x-1)+\frac{3}{4}N_3(2x-2)+\frac{1}{4}N_3(2x-3)

class="wikitable"
style="text-align: center;" |Quadratic B-spline
N_3(x)
valign="top" style="background: #ffffff;" | File:CardinalBSplineOfOrder3.pngvalign="top" style="background: #ffffff;" |File:TwoScaleRelationForCardinalBSplineOfOrder3.png

=Cubic B-spline=

The cubic B-spline is the cardinal B-spline of order 4, denoted by N_4(x). It is given by the following expressions:

:

N_4(x)=

\begin{cases}

\frac{1}{6}x^3 & 0\le x < 1 \\

-\frac{1}{2}x^3+2x^2-2x+\frac{2}{3} & 1\le x < 2 \\

\frac{1}{2}x^3-4x^2+10x-\frac{22}{3} & 2\le x< 3 \\

- \frac{1}{6}x^3 +2x^2 -8x +\frac{32}{3} & 3\le x < 4 \\

0 & \text{otherwise}

\end{cases}

The two-scale relation for the cubic B-spline is

:

N_4(x)=\frac{1}{8}N_4(2x)+\frac{1}{2}N_4(2x-1)+\frac{3}{4}N_4(2x-2)+\frac{1}{2}N_4(2x-3)+\frac{1}{8}N_4(2x-4)

class="wikitable"
style="text-align: center;" |Cubic B-spline
N_4(x)
valign="top" style="background: #ffffff;" | File:CardinalBSplineOfOrder4.pngvalign="top" style="background: #ffffff;" | File:TwoScaleRelationForCardinalBSplineOfOrder4_fixed.png

=Bi-quadratic B-spline=

The bi-quadratic B-spline is the cardinal B-spline of order 5 denoted by N_5(x). It is given by

:

N_5(x)=

\begin{cases}

\frac{1}{24}x^4 & 0 \le x < 1 \\

-\frac{1}{6}x^4+\frac{5}{6}x^3-\frac{5}{4}x^2 +\frac{5}{6}x-\frac{5}{24} & 1\le x < 2 \\

\frac{1}{4}x^4 -\frac{5}{2} x^3 +\frac{35}{4}x^2 -\frac{25}{2}x +\frac{155}{24} & 2\le x < 3 \\

-\frac{1}{6}x^4 +\frac{5}{2}x^3 -\frac{55}{4}x^2 +\frac{65}{2}x -\frac{655}{24} & 3 \le x < 4 \\

\frac{1}{24}x^4 - \frac{5}{6}x^3 + \frac{25}{4}x^2 - \frac{125}{6} x + \frac{625}{24} & 4 \le x < 5 \\

0 & \text{otherwise}

\end{cases}

The two-scale relation is

:

N_5(x)=\frac{1}{16}N_5(2x)+\frac{5}{16}N_5(2x-1)+\frac{10}{16}N_5(2x-2)+\frac{10}{16}N_5(2x-3)+\frac{5}{16}N_5(2x-4)+\frac{1}{16}N_5(2x-5)

=Quintic B-spline=

The quintic B-spline is the cardinal B-spline of order 6 denoted by N_6(x). It is given by

:

N_6(x) =

\begin{cases}

\frac{1}{120}x^5 & 0\le x < 1 \\

-\frac{1}{24}x^5+\frac{1}{4}x^4 -\frac{1}{2}x^3 +\frac{1}{2}x^2 - \frac{1}{4}x +\frac{1}{20} & 1 \le x < 2 \\

\frac{1}{12}x^5 - x^4 +\frac{9}{2} x^3 -\frac{19}{2}x^2 +\frac{39}{4}x -\frac{79}{20} & 2 \le x < 3 \\

-\frac{1}{12}x^5 +\frac{3}{2}x^4 - \frac{21}{2}x^3 +\frac{71}{2}x^2 -\frac{231}{4}x+\frac{731}{20} & 3 \le x < 4 \\

\frac{1}{24}x^5 -x^4 +\frac{19}{2}x^3 - \frac{89}{2}x^2 +\frac{409}{4}x -\frac{1829}{20} & 4 \le x < 5 \\

-\frac{1}{120}x^5 +\frac{1}{4}x^4 -3x^3 +18x^2 -54 x +\frac{324}{5} & 5 \le x < 6 \\

0 & \text{otherwise}

\end{cases}

Multi-resolution analysis generated by cardinal B-splines

The cardinal B-spline N_m(x) of order m generates a multi-resolution analysis. In fact, from the elementary properties of these functions enunciated above, it follows that the function N_m(x) is square integrable and is an element of the space L^2(R) of square integrable functions. To set up the multi-resolution analysis the following notations used.

:* For any integers k,j, define the function N_{m,kj}(x)=N_m(2^kx-j).

:* For each integer k, define the subspace V_k of L^2(R) as the closure of the linear span of the set \{ N_{m,kj}(x): j=\cdots,-2,-1,0,1,2,\cdots\}.

That these define a multi-resolution analysis follows from the following:

  1. The spaces V_k satisfy the property: \cdots \subset V_{-2}\subset V_{-1}\subset V_0 \subset V_1\subset V_2 \subset \cdots.
  2. The closure in L^2(R) of the union of all the subspaces V_k is the whole space L^2(R).
  3. The intersection of all the subspaces V_k is the singleton set containing only the zero function.
  4. For each integer k the set \{N_{m,kj}(x): j= \cdots,-2,-1,0,1,2,\cdots\} is an unconditional basis for V_k. (A sequence {xn} in a Banach space X is an unconditional basis for the space X if every permutation of the sequence {xn} is also a basis for the same space X.{{cite book|last1=Christopher Heil|title=A Basis Theory Primer|year=2011|url=https://archive.org/details/basistheoryprime00chei|url-access=limited|publisher=Birkhauser|pages=[https://archive.org/details/basistheoryprime00chei/page/n203 177]–188|isbn=9780817646868 }})

Wavelets from cardinal B-splines

Let m be a fixed positive integer and N_m(x) be the cardinal B-spline of order m. A function \psi_m(x) in L^2(R) is a basic wavelet relative to the cardinal B-spline function N_m(x) if the closure in L^2(R) of the linear span of the set \{\psi_m(x-j):j=\cdots, -2,-1,0,1,2,\cdots\} (this closure is denoted by W_0) is the orthogonal complement of V_0 in V_1. The subscript m in \psi_m(x) is used to indicate that \psi_m(x) is a basic wavelet relative the cardinal B-spline of order m. There is no unique basic wavelet \psi_m(x) relative to the cardinal B-spline N_m(x). Some of these are discussed in the following sections.

Wavelets relative to cardinal B-splines using fundamental interpolatory splines

=Fundamental interpolatory spline=

==Definitions==

Let m be a fixed positive integer and let N_m(x) be the cardinal B-spline of order m. Given a sequence \{f_j:j=\cdots, -2,-1,0,1,2,\cdots \} of real numbers, the problem of finding a sequence \{c_{m,k}: k=\cdots, -2,-1,0,1,2,\cdots \} of real numbers such that

:\sum_{k=-\infty}^\infty c_{m,k} N_m\left(j+\frac{m}{2}-k\right) = f_j for all j,

is known as the cardinal spline interpolation problem. The special case of this problem where the sequence \{f_j\} is the sequence \delta_{0j}, where \delta_{ij} is the Kronecker delta function \delta_{ij} defined by

:\delta_{ij}=\begin{cases}1,&\text{ if } i=j \\ 0, & \text{ if } i\ne j \end{cases},

is the fundamental cardinal spline interpolation problem. The solution of the problem yields the fundamental cardinal interpolatory spline of order m. This spline is denoted by L_m(x) and is given by

: L_m(x) = \sum_{k=-\infty}^\infty c_{m,k} N_m\left(x+\frac{m}{2}-k\right)

where the sequence \{c_{m,k}\} is now the solution of the following system of equations:

:\sum_{k=-\infty}^\infty c_{m,k} N_m\left(j+\frac{m}{2}-k\right) = \delta_{0j}

==Procedure to find the fundamental cardinal interpolatory spline==

The fundamental cardinal interpolatory spline L_m(x) can be determined using Z-transforms. Using the following notations

:A(z)=\sum_{k=-\infty}^\infty \delta_{k0}z^k =1,

:B_m(z)=\sum_{k=-\infty}^\infty N_m\left(k+\frac{m}{2}\right)z^k,

:C_m(z)=\sum_{k=-\infty}^\infty c_{m,k} z^k,

it can be seen from the equations defining the sequence c_{m,k} that

:B_m(z)C_m(z)=A(z)

from which we get

:C_m(z)=\frac{1}{B_m(z)}.

This can be used to obtain concrete expressions for c_{m,k}.

==Example==

As a concrete example, the case L_4(x) may be investigated. The definition of B_m(z) implies that

:B_4(x)=\sum_{k=-\infty}^\infty N_4(2+k)z^k

The only nonzero values of N_4(k+2) are given by k =-1,0,1 and the corresponding values are

:N_4(1)= \frac{1}{6}, N_4(2) = \frac{4}{6}, N_4(3)=\frac{1}{6}.

Thus B_4(z) reduces to

:B_4(z)=\frac{1}{6}z^{-1}+\frac{4}{6}z^0+\frac{1}{6}z^1=\frac{1+4z+z^2}{6z}

This yields the following expression for C_4(z).

:C_4(z)=\frac{6z}{1+4z+z^2}

Splitting this expression into partial fractions and expanding each term in powers of z in an annular region the values of c_{4,k} can be computed. These values are then substituted in the expression for L_4(x) to yield

:L_4(x)= \sum_{k=-\infty}^\infty (-1)^k \sqrt{3}(2-\sqrt{3})^

k
N_4(x+2-k)

=Wavelet using fundamental interpolatory spline=

For a positive integer m, the function \psi_m(x) defined by

:\psi_{I,m}(x)=\frac{d^m}{dx^m}L_{2m}(2x-1)

is a basic wavelet relative to the cardinal B-spline of order N_m(x). The subscript I in \psi_{I,m} is used to indicate that it is based in the interpolatory spline formula. This basic wavelet is not compactly supported.

=Example=

The wavelet of order 2 using interpolatory spline is given by

:\psi_{I,2}(x)=\frac{d^2}{dx^2}L_4(2x-1)

The expression for L_4(x) now yields the following formula:

:\psi_{I,2}(x)=\frac{d^2}{dx^2}\sum_{k=-\infty}^\infty (-1)^k \sqrt{3}(2-\sqrt{3})^

k
N_4(2x+1-k)

Now, using the expression for the derivative of N_m(x) in terms of N_{m-1}(x) the function \psi_2(x) can be put in the following form:

:\psi_{I,2}(x)=\sum_{k=-\infty}^\infty (-1)^k 4 \sqrt{3}(2-\sqrt{3})^

k
\Big((N_2(2x+k-1)-2N_2(2x+k-2)+N_2(2x+k-3)\Big )

The following piecewise linear function is the approximation to \psi_2(x) obtained by taking the sum of the terms corresponding to k=-3, \ldots, 3 in the infinite series expression for \psi_2(x).

:

\psi_{I,2}(x)\approx \begin{cases}

0.07142668x + 0.17856670 & -2.5< x \le -2 \\

-0.48084803 x -0.92598272 & -2 < x \le -1.5 \\

2.0088293 x + 2.8085333 & -1.5 < x \le -1 \\

-7.5684795 x -6.7687755 & -1 < x \le - 0.5 \\

28.245949 x + 11.138439 & -0.5 < x \le 0 \\

-57.415316 x + 11.138439& 0

57.415316 x -46.276878& 0.5 < x \le 1 \\

-28.245949x + 39.384388 & 1< x \le 1.5\\

7.5684795 x-14.337255 & 1.5

-2.0088293 x + 4.8173625 & 2 < x \le 2.5 \\

0.48084803x -1.4068308& 2.5 < x \le 3\\

-0.07142668 x +0.24999338& 3 < x \le 3.5 \\

0 & {otherwise}

\end{cases}

=Two-scale relation =

The two-scale relation for the wavelet function \psi_m(x) is given by

:\psi_{I,m}(x)=\sum_{-\infty}^\infty q_nN_m(2x-n) where q_n= \sum_{j=0}^m (-1)^j{m \choose j}c_{m+n-j-1}.

Compactly supported B-spline wavelets

The spline wavelets generated using the interpolatory wavelets are not compactly supported. Compactly supported B-spline wavelets were discovered by Charles K. Chui and Jian-zhong Wang and published in 1991.{{cite book|last1=Charles K Chui|title=An Introduction to Wavelets|date=1992|publisher=Academic Press|page=249|ref=Chui}} The compactly supported B-spline wavelet relative to the cardinal B-spline N_m(x) of order m discovered by Chui and Wang and denoted by \psi_{C,m}(x), has as its support the interval [0, 2m-1]. These wavelets are essentially unique in a certain sense explained below.

=Definition=

The compactly supported B-spline wavelet of order m is given by

:\psi_{C,m}(x)=\frac{1}{2^{m-1}}\sum_{j=0}^{2m-2} (-1)^j N_{2m}(j+1)\frac{d^m}{dx^m}N_{2m}(2x-j)

This is an m-th order spline. As a special case, the compactly supported B-spline wavelet of order 1 is

:\psi_{C,1}(x)=N_2(1)\frac{d}{dx}N_2(2x) = \begin{cases}1 & 0\le x < \frac{1}{2} \\ -1 & \frac{1}{2} \le x < 1 \\ 0 & \text{otherwise}\end{cases}

which is the well-known Haar wavelet.

=Properties=

  1. The support of \psi_{C,m}(x) is the closed interval [0, 2m-1].
  2. The wavelet \psi_{C,m}(x) is the unique wavelet with minimum support in the following sense: If \eta(x) \in W_0 generates W_0 and has support not exceeding 2m-1 in length then \eta(x)=c_0\psi_{C,m}(x-n_0) for some nonzero constant c_0 and for some integer n_0.{{cite book|last1=Charles K Chui|title=An Introduction to Wavelets|date=1992|publisher=Academic Press|page=184}}
  3. \psi_{C,m}(x) is symmetric for even m and antisymmetric for odd m.

=Two-scale relation=

\psi_m(x) satisfies the two-scale relation:

:\psi_{C,m}(x)=\sum_{n=0}^{3m-2}q_nN_m(2x-n) where q_n=\frac{(-1)^n}{2^{m-1}}\sum_{j=0}^m {m \choose j}N_{2m}(n-j+1).

=Decomposition relation=

The decomposition relation for the compactly supported B-spline wavelet has the following form:

:N_m(2x-l) = \sum_{k=-\infty}^{\infty} \left[ a_{m, l-2k}N_m(x-k) + b_{m, l-2k}\psi_{C,m}(x-k)\right]

where the coefficients a_{m,j} and b_{m,j} are given by

: a_{m,j}= - \frac{(-1)^j}{2}\sum_{l=-\infty}^\infty q_{-j+2m-2l+1}c_{2m,l},

: b_{m,j}= \frac{(-1)^j}{2}\sum_{l=-\infty}^\infty p_{-j+2m-2l+1}c_{2m,l}.

Here the sequence c_{2m,l} is the sequence of coefficients in the fundamental interpolatoty cardinal spline wavelet of order m.

Compactly supported B-spline wavelets of small orders

=Compactly supported B-spline wavelet of order 1 =

The two-scale relation for the compactly supported B-spline wavelet of order 1 is

:\psi_{C,1}(x)= N_1(2x)-N_1(2x-1)

The closed form expression for compactly supported B-spline wavelet of order 1 is

:

\psi_{C,1}(x)=

\begin{cases}

1 & 0\le x < \frac{1}{2} \\

-1 & \frac{1}{2} \le x < 1\\

0 & \text{otherwise}

\end{cases}

=Compactly supported B-spline wavelet of order 2 =

The two-scale relation for the compactly supported B-spline wavelet of order 2 is

:\psi_{C,2}(x)= \frac{1}{12}\left(N_2(2x)-6 N_2(2x-1)+ 10 N_2(2x-2)-6 N_2(2x-3)+ N_2(2x-4)\right)

The closed form expression for compactly supported B-spline wavelet of order 2 is

:

\psi_{C,2}(x)=

\begin{cases}

\frac{1}{6}x & 0\le x < \frac{1}{2}\\

-\frac{7}{6}x + \frac{2}{3} & \frac{1}{2} \le x < 1\\

\frac{8}{3}x - \frac{19}{6} & 1 \le x < \frac{3}{2}\\

-\frac{8}{3} x + \frac{29}{6} & \frac{3}{2} \le x < 2 \\

\frac{7}{6} x- \frac{17}{6} & 2 \le x < \frac{5}{2}\\

-\frac{1}{6} x + \frac{1}{2} & \frac{5}{2} \le x < 3 \\

0 & \text{otherwise}

\end{cases}

=Compactly supported B-spline wavelet of order 3 =

The two-scale relation for the compactly supported B-spline wavelet of order 3 is

:\psi_{C,3}(x)= \frac{1}{480}\Big[ (N_3(2x)-29 N_3(2x-1)+ 147 N_3(2x-2)- 303 N_3(2x-3)+

:::::303N_3(2x-4) - 147N_3(2x-5) + 29 N_3(2x-6) - N_3(2x-7)\Big]

The closed form expression for compactly supported B-spline wavelet of order 3 is

:

\psi_{C,3}(x)=

\begin{cases}

\frac{1}{240}x^2 & 0\le x < \frac{1}{2}\\

- \frac{31}{240}x^2+ \frac{2}{15}x- \frac{1}{30} & \frac{1}{2} \le x < 1\\

\frac{103}{120}x^2- \frac{221}{120}x + \frac{229}{240} & 1 \le x < \frac{3}{2}\\

-\frac{313}{120} x^2+ \frac{1027}{120}x- \frac{1643}{240} & \frac{3}{2} \le x < 2 \\

\frac{22}{5} x^2 - \frac{779}{40} x + \frac{339}{16} & 2 \le x < \frac{5}{2}\\

-\frac{22}{5} x^2 + \frac{981}{40} x- \frac{541}{16} & \frac{5}{2} \le x < 3 \\

\frac{313}{120}x^2-\frac{701}{40}x+ \frac{2341}{80 } & 3 \le x < \frac{7}{2} \\

-\frac{103}{120}x^2 +\frac{809}{120}x- \frac{3169}{240 } & \frac{7}{2} \le x < 4 \\

\frac{31}{240}x^2-\frac{139}{120}x+\frac{623}{240} & 4 \le x < \frac{9}{2} \\

-\frac{1}{240}x^2+\frac{1}{24}x-\frac{5}{48} & \frac{9}{2} \le x < 5 \\

0 & \text{otherwise}

\end{cases}

=Compactly supported B-spline wavelet of order 4 =

The two-scale relation for the compactly supported B-spline wavelet of order 4 is

:\psi_{C,4}(x)= \frac{1}{40320}\Big[ N_4(2x)- 124 N_4(2x-1)+ 1677 N_4(2x-2)- 7904 N_4(2x-3)+ 18482 N_4(2x-4) -

:::::24264 N_4(2x-5) + 18482N_4(2x-6) - 7904 N_4(2x-7) + 1677 N_4(2x-8) - 124N_4(2x-9) + N_4(2x-10)\Big]

The closed form expression for compactly supported B-spline wavelet of order 4 is

:

\psi_{C,4}(x)=

\begin{cases}

\frac{1}{30240}x^3 & 0\le x < \frac{1}{2}\\

-\frac{127}{30240}x^3+\frac{2}{315}x^2-\frac{1}{315}x+\frac{1}{1890 } & \frac{1}{2} \le x < 1\\

\frac{19}{280}x^3-\frac{47}{224}x^2+\frac{2147}{10080}x-\frac{103}{1440 } & 1 \le x < \frac{3}{2}\\

-\frac{1109}{2520}x^3+\frac{465}{224}x^2-\frac{32413}{10080}x+\frac{16559}{10080 } & \frac{3}{2} \le x < 2 \\

\frac{5261}{3360}x^3-\frac{33463}{3360}x^2+\frac{42043}{2016}x-\frac{145193}{10080} & 2 \le x < \frac{5}{2}\\

-\frac{35033}{10080}x^3+\frac{93577}{3360} x^2- \frac{148517}{2016}x+ \frac{216269}{3360} & \frac{5}{2} \le x < 3 \\

\frac{4832}{945}x^3- \frac{27691}{560}x^2+ \frac{113923}{720}x-\frac{28145}{168} & 3 \le x < \frac{7}{2} \\

-\frac{4832}{945}x^3+\frac{58393}{1008}x^2-\frac{52223}{240}x+\frac{2048227}{7560} & \frac{7}{2} \le x < 4 \\

\frac{35033}{10080}x^3-\frac{75827}{1680}x^2+\frac{981101}{5040}x- \frac{234149}{840} & 4 \le x < \frac{9}{2} \\

-\frac{5261}{3360}x^3+\frac{38509}{1680}x^2-\frac{112487}{1008}x+ \frac{30347}{168} & \frac{9}{2} \le x < 5 \\

\frac{1109}{2520}x^3-\frac{24077}{3360}x^2+\frac{78311}{2016}x- \frac{141311}{2016} & 5 \le x < \frac{11}{2} \\

-\frac{19}{280}x^3+\frac{1361}{1120}x^2-\frac{14617}{2016}x+\frac{4151}{288} & \frac{11}{2} \le x < 6 \\

\frac{127}{30240}x^3-\frac{55}{672}x^2+\frac{5359}{10080}x-\frac{11603}{10080} & 6 \le x < \frac{13}{2} \\

-\frac{1}{30240}x^3+\frac{1}{1440}x^2-\frac{7}{1440}x+ \frac{49}{4320} & \frac{13}{2} \le x < 7 \\

0 & \text{otherwise}

\end{cases}

=Compactly supported B-spline wavelet of order 5 =

The two-scale relation for the compactly supported B-spline wavelet of order 5 is

: \psi_{C,5}(x)= \frac{1}{5806080}\Big[N_5(2x)-507 N_5(2x-1)+17128 N_5(2x-2)-166304 N_5(2x-3)+ 748465N_5(2x-4)

::::: -1900115N_5(2x-5)+2973560 N_5(2x-6)-2973560 N_5(2x-7)+1900115N_5(2x-8)

::::: -748465 N_5(2x-9)+ 166304 N_5(2x-10)-17128N_5(2x-11)+507N_5(2x-12)-N_5(2x-13)\Big]

The closed form expression for compactly supported B-spline wavelet of order 5 is

:

\psi_{C,5}(x)=

\begin{cases}

\frac{1}{8709120}x^4 & 0\le x < \frac{1}{2} \\

- \frac{73}{1244160}x^4+\frac{1}{8505}x^3-\frac{1}{11340}x^2+\frac{1}{34020}x-\frac{1}{272160} & \frac{1}{2} \le x < 1 \\

\frac{9581}{4354560}x^4-\frac{19417}{2177280}x^3+\frac{1303}{96768}x^2-\frac{19609}{2177280}x+\frac{6547}{2903040} & 1\le x < \frac{3}{2} \\

-\frac{118931}{4354560}x^4+\frac{366119}{2177280}x^3-\frac{186253}{483840}x^2+\frac{121121}{311040}x-\frac{427181}{2903040} & \frac{3}{2} \le x < 2 \\

\frac{759239}{4354560}x^4-\frac{3146561}{2177280}x^3+\frac{6466601}{1451520}x^2-\frac{13202873}{2177280}x+\frac{26819897}{8709120} & 2\le x < \frac{5}{2} \\

-\frac{2980409}{4354560}x^4+\frac{5183893}{725760}x^3-\frac{13426333}{483840}x^2+\frac{426589}{8960}x-\frac{12635243}{414720} & \frac{5}{2}\le x < 3 \\

\frac{7873577}{4354560}x^4-\frac{16524079}{725760}x^3+\frac{7385369}{69120}x^2-\frac{17868671}{80640}x+\frac{497668543}{2903040} & 3\le x < \frac{7}{2} \\

- \frac{14714327}{4354560}x^4+\frac{108543091}{2177280}x^3-\frac{56901557}{207360}x^2+\frac{1454458651}{2177280}x-\frac{5286189059}{8709120} & \frac{7}{2}\le x < 4 \\

\frac{15619}{3402}x^4-\frac{33822017}{435456}x^3+\frac{15828929}{32256}x^2-\frac{597598433}{435456}x+\frac{277413649}{193536} & 4\le x < \frac{9}{2} \\

-\frac{15619}{3402}x^4+\frac{38150335}{435456}x^3-\frac{20157247}{32256}x^2+ \frac{859841695}{435456}x- \frac{64472345}{27648} &\frac{9}{2}\le x < 5 \\

\frac{14714327}{4354560}x^4-\frac{4466137}{62208}x^3+\frac{165651247}{290304}x^2-\frac{875490655}{435456}x+\frac{4614904015}{1741824} & 5\le x < \frac{11}{2} \\

-\frac{7873577}{4354560}x^4+\frac{30717383}{725760}x^3- \frac{179437319}{483840}x^2+ \frac{16606729}{11520}x- \frac{869722273}{414720} & \frac{11}{2}\le x < 6 \\

\frac{2980409}{4354560}x^4- \frac{12698561}{725760}x^3+ \frac{16211669}{96768}x^2-\frac{19138891}{26880}x+ \frac{3289787993}{2903040} & 6\le x < \frac{13}{2} \\

-\frac{759239}{4354560}x^4+\frac{10519741}{2177280}x^3- \frac{10403603}{207360}x^2+ \frac{71964499}{311040}x-\frac{3481646837}{8709120} & \frac{13}{2} \le x < 7 \\

\frac{118931}{4354560}x^4-\frac{1774639}{2177280}x^3+\frac{630259}{69120}x^2-\frac{14096161}{311040}x+\frac{245108501}{2903040} & 7\le x < \frac{15}{2} \\

-\frac{9581}{4354560}x^4+\frac{21863}{311040}x^3-\frac{407387}{483840}x^2+\frac{9758873}{2177280}x-\frac{25971499}{2903040} & \frac{15}{2} \le x < 8 \\

\frac{73}{1244160}x^4-\frac{4343}{2177280}x^3+ \frac{5273}{207360}x^2-\frac{313703}{2177280}x+ \frac{380873}{1244160} & 8\le x < \frac{17}{2} \\

-\frac{1}{8709120}x^4+ \frac{1}{241920}x^3- \frac{1}{17920}x^2+\frac{3}{8960}x-\frac{27}{35840} & \frac{17}{2} \le x < 9\\

0 & \text{otherwise}

\end{cases}

=Images of compactly supported B-spline wavelets=

class="wikitable"
valign="top" style="background: #ffffff;" | File:CardinalBSplineWaveletOfOrder1.pngvalign="top" style="background: #ffffff;" |File:CardinalBSplineWaveletOfOrder2.png
B-spline wavelet of order 1B-spline wavelet of order 2
valign="top" style="background: #ffffff;" |File:CardinalBSplineWaveletOfOrder3.pngvalign="top" style="background: #ffffff;" |File:CardinalBSplineWaveletOfOrder4.pngvalign="top" style="background: #ffffff;" |File:CardinalBSplineWaveletOfOrder5.png
B-spline wavelet of order 3B-spline wavelet of order 4B-spline wavelet of order 5

Battle-Lemarie wavelets

The Battle-Lemarie wavelets form a class of orthonormal wavelets constructed using the class of cardinal B-splines. The expressions for these wavelets are given in the frequency domain; that is, they are defined by specifying their Fourier transforms. The Fourier transform of a function of t, say, F(t), is denoted by \hat{F}(\omega).

=Definition=

Let m be a positive integer and let N_m(x) be the cardinal B-spline of order m. The Fourier transform of N_m(x) is \hat{N}_m(\omega). The scaling function \phi_m(t) for the m-th order Battle-Lemarie wavelet is that function whose Fourier transform is

:\hat{\phi}_m(\omega) = \frac{\hat{N}_m(\omega)}{\left(\sum_{k=-\infty}^\infty \vert \hat{N}_m(\omega +2\pi k) \vert^2\right)^{1/2}}.

The m-th order Battle-Lemarie wavelet is the function \psi_{BL,m}(t) whose Fourier transform is

:\hat{\psi}_{BL,m}(\omega) = - \frac{e^{-i\omega/2}\,\, \overline{\hat{\phi}_m(\omega + 2\pi)}\,\,\hat{\phi}_m\left(\frac{\omega}{2}\right)}{\overline{ \hat{\phi}_m\left(\frac{\omega}{2}+\pi\right)}}

References

{{reflist}}

Further reading

  • {{cite journal|last1=Amir Z Averbuch and Valery A Zheludev|title=Wavelet transforms generated by splines|journal=International Journal of Wavelets, Multiresolution and Information Processing|date=2007|volume=257|issue=5|url=http://www.cs.tau.ac.il/~zhel/PS/splitr3AA.pdf|access-date=21 December 2014}}
  • {{cite book|last1=Amir Z. Averbuch, Pekka Neittaanmaki, and Valery A. Zheludev|title=Spline and Spline Wavelet Methods with Applications to Signal and Image Processing Volume I|date=2014|publisher=Springer|isbn=978-94-017-8925-7}}

Category:Wavelets

Category:Continuous wavelets

Category:Splines (mathematics)