Srivastava code
{{Short description|Class of error correction code}}
In coding theory, Srivastava codes, formulated by Professor J. N. Srivastava, form a class of parameterised error-correcting codes which are a special case of alternant codes.
Definition
The original Srivastava code over GF(q) of length n is defined by a parity check matrix H of alternant form
:
\frac{\alpha_1^\mu}{\alpha_1-w_1} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_1} \\
\vdots & \ddots & \vdots \\
\frac{\alpha_1^\mu}{\alpha_1-w_s} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_s} \\
\end{bmatrix}
where the αi and zi are elements of GF(qm)
Properties
The parameters of this code are length n, dimension ≥ n − ms and minimum distance ≥ s + 1.
References
- {{cite book | author=F.J. MacWilliams | authorlink=Jessie MacWilliams |author2=N.J.A. Sloane | title=The Theory of Error-Correcting Codes | url=https://archive.org/details/theoryoferrorcor0000macw | url-access=registration | publisher=North-Holland | date=1977 | isbn=0-444-85193-3 | pages=[https://archive.org/details/theoryoferrorcor0000macw/page/357 357–360] }}
Category:Error detection and correction
{{crypto-stub}}