Steffensen's inequality

{{Short description|Equation in mathematics}}

{{single source|date=August 2007}}

Steffensen's inequality is an equation in mathematics named after Johan Frederik Steffensen.{{cite journal|last1=Rabier|first1=Patrick J.|title=Steffensen's inequality and L^{1}L estimates of weighted integrals|journal=Proceedings of the American Mathematical Society|volume=140|issue=2|year=2012|pages=665–675|issn=0002-9939|doi=10.1090/S0002-9939-2011-10939-0|doi-access=free}}

It is an integral inequality in real analysis, stating:

: If ƒ : [ab] → R is a non-negative, monotonically decreasing, integrable function

: and g : [ab] → [0, 1] is another integrable function, then

::\int_{b - k}^{b} f(x) \, dx \leq \int_{a}^{b} f(x) g(x) \, dx \leq \int_{a}^{a + k} f(x) \, dx,

:where

::k = \int_{a}^{b} g(x) \, dx.

References