Steric 6-cubes#Runcinated 6-demicube
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
| |160px |160px |
colspan=3|Orthogonal projections in D5 Coxeter plane |
---|
In six-dimensional geometry, a steric 6-cube is a convex uniform 6-polytope. There are unique 4 steric forms of the 6-cube.
{{TOC left}}
{{-}}
Steric 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steric 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{3,33,1} h4{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 3360 |
bgcolor=#e7dcc3|Vertices | 480 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Runcinated demihexeract
- Runcinated 6-demicube
- Small prismated hemihexeract (Acronym: sophax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sophax.htm (x3o3o *b3o3x3o - sophax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the 480 vertices of a steric 6-cube centered at the origin are coordinate permutations:
: (±1,±1,±1,±1,±1,±3)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t03|150}}
= Related polytopes=
{{Steric cube table}}
Stericantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{3,33,1} h2,4{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 12960 |
bgcolor=#e7dcc3|Vertices | 2880 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Runcitruncated demihexeract
- Runcitruncated 6-demicube
- Prismatotruncated hemihexeract (Acronym: pithax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/pithax.htm (x3x3o *b3o3x3o - pithax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the 2880 vertices of a stericantic 6-cube centered at the origin are coordinate permutations:
: (±1,±1,±1,±3,±3,±5)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t013|150}}
Steriruncic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriruncic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3{3,33,1} h3,4{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 7680 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Runcicantellated demihexeract
- Runcicantellated 6-demicube
- Prismatorhombated hemihexeract (Acronym: prohax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/prohax.htm (x3o3o *b3x3x3o - prohax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the 1920 vertices of a steriruncic 6-cube centered at the origin are coordinate permutations:
: (±1,±1,±1,±1,±3,±5)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t023|150}}
Steriruncicantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriruncicantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{3,32,1} h2,3,4{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 17280 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Runcicantitruncated demihexeract
- Runcicantitruncated 6-demicube
- Great prismated hemihexeract (Acronym: gophax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gophax.htm (x3x3o *b3x3x3o - gophax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the 5760 vertices of a steriruncicantic 6-cube centered at the origin are coordinate permutations:
: (±1,±1,±1,±3,±5,±7)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t0123|150}}
Related polytopes
There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:
{{Demihexeract_family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3o *b3o3x3o - sophax, x3x3o *b3o3x3o - pithax, x3o3o *b3x3x3o - prohax, x3x3o *b3x3x3o - gophax {{sfn whitelist| CITEREFKlitzing}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}