Stericated 6-cubes#Steriruncicantitruncated 6-cube
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
colspan=3|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a stericated 6-cube is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-cube.
There are 8 unique sterications for the 6-cube with permutations of truncations, cantellations, and runcinations.
{{-}}
Stericated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2r2r{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node}} {{CDD|node|split1|nodes|3a4b|nodes_11|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 5760 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small cellated hexeract (Acronym: scox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/scox.htm (x4o3o3o3x3o - scox)]}}
= Images =
{{6-cube Coxeter plane graphs|t04|150}}
Steritruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steritruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 19200 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellirhombated hexeract (Acronym: catax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/catax.htm (x4x3o3o3x3o - catax)]}}
= Images =
{{6-cube Coxeter plane graphs|t014|150}}
== Stericantellated 6-cube ==
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2r2r{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node}} {{CDD|node_1|split1|nodes|3a4b|nodes_11|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 28800 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellirhombated hexeract (Acronym: crax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/crax.htm (x4o3x3o3x3o - crax)]}}
= Images =
{{6-cube Coxeter plane graphs|t024|150}}
Stericantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|stericantitruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 46080 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celligreatorhombated hexeract (Acronym: cagorx) (Jonathan Bowers)Klitzing, (x4x3x3o3x3o - cagorx)
= Images =
{{6-cube Coxeter plane graphs|t0124|150}}
Steriruncinated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncinated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 15360 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismated hexeract (Acronym: copox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/copox.htm (x4o3o3x3x3o - copox)]}}
= Images =
{{6-cube Coxeter plane graphs|t034|150}}
Steriruncitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncitruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t2r{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node}} {{CDD|node|split1|nodes_11|3a4b|nodes_11|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 40320 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismatotruncated hexeract (Acronym: captix) (Jonathan Bowers)Klitzing, (x4x3o3x3x3o - captix)
= Images =
{{6-cube Coxeter plane graphs|t0134|150}}
Steriruncicantellated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncicantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 40320 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismatorhombated hexeract (Acronym: coprix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/coprix.htm (x4o3x3x3x3o - coprix)]}}
= Images =
{{6-cube Coxeter plane graphs|t0234|150}}
Steriruncicantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriuncicantitruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | tr2r{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node}} {{CDD|node_1|split1|nodes_11|3a4b|nodes_11|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 69120 |
bgcolor=#e7dcc3|Vertices | 23040 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great cellated hexeract (Acronym: gocax) (Jonathan Bowers)Klitzing, (x4x3x3x3x3o - gocax)
= Images =
{{6-cube Coxeter plane graphs|t01234|150}}
Related polytopes
These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}}{{sfn whitelist|CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}