Stericated 6-simplexes#Stericated 6-simplex
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
colspan=3|Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations (sterication) of the regular 6-simplex.
There are 8 unique sterications for the 6-simplex with permutations of truncations, cantellations, and runcinations.
{{-}}
Stericated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 700 |
bgcolor=#e7dcc3|Cells | 1470 |
bgcolor=#e7dcc3|Faces | 1400 |
bgcolor=#e7dcc3|Edges | 630 |
bgcolor=#e7dcc3|Vertices | 105 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small cellated heptapeton (Acronym: scal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/scal.htm (x3o3o3o3x3o - scal)]}}
= Coordinates =
The vertices of the stericated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,1,2). This construction is based on facets of the stericated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t04|150}}
Steritruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steritruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 945 |
bgcolor=#e7dcc3|Cells | 2940 |
bgcolor=#e7dcc3|Faces | 3780 |
bgcolor=#e7dcc3|Edges | 2100 |
bgcolor=#e7dcc3|Vertices | 420 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellitruncated heptapeton (Acronym: catal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/catal.htm (x3x3o3o3x3o - catal)]}}
= Coordinates =
The vertices of the steritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t014|150}}
Stericantellated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericantellated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 1050 |
bgcolor=#e7dcc3|Cells | 3465 |
bgcolor=#e7dcc3|Faces | 5040 |
bgcolor=#e7dcc3|Edges | 3150 |
bgcolor=#e7dcc3|Vertices | 630 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellirhombated heptapeton (Acronym: cral) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/scral.htm (x3o3x3o3x3o - cral)]}}
= Coordinates =
The vertices of the stericantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t024|150}}
Stericantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|stericantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 1155 |
bgcolor=#e7dcc3|Cells | 4410 |
bgcolor=#e7dcc3|Faces | 7140 |
bgcolor=#e7dcc3|Edges | 5040 |
bgcolor=#e7dcc3|Vertices | 1260 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celligreatorhombated heptapeton (Acronym: cagral) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cagral.htm (x3x3x3o3x3o - cagral)]}}
= Coordinates =
The vertices of the stericanttruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the stericantitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t0124|150}}
Steriruncinated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncinated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 700 |
bgcolor=#e7dcc3|Cells | 1995 |
bgcolor=#e7dcc3|Faces | 2660 |
bgcolor=#e7dcc3|Edges | 1680 |
bgcolor=#e7dcc3|Vertices | 420 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismated heptapeton (Acronym: copal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/copal.htm (x3o3o3x3x3o - copal)]}}
= Coordinates =
The vertices of the steriruncinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,2,3,3). This construction is based on facets of the steriruncinated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t034|150}}
Steriruncitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 945 |
bgcolor=#e7dcc3|Cells | 3360 |
bgcolor=#e7dcc3|Faces | 5670 |
bgcolor=#e7dcc3|Edges | 4410 |
bgcolor=#e7dcc3|Vertices | 1260 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismatotruncated heptapeton (Acronym: captal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/captal.htm (x3x3o3x3x3o - captal)]}}
= Coordinates =
The vertices of the steriruncittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t0134|150}}
Steriruncicantellated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|steriruncicantellated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 1050 |
bgcolor=#e7dcc3|Cells | 3675 |
bgcolor=#e7dcc3|Faces | 5880 |
bgcolor=#e7dcc3|Edges | 4410 |
bgcolor=#e7dcc3|Vertices | 1260 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bistericantitruncated 6-simplex as t1,2,3,5{3,3,3,3,3}
- Celliprismatorhombated heptapeton (Acronym: copril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/copril.htm (x3o3x3x3x3o - copril)]}}
= Coordinates =
The vertices of the steriruncitcantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncicantellated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t0234|150}}
Steriruncicantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriuncicantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 105 |
bgcolor=#e7dcc3|4-faces | 1155 |
bgcolor=#e7dcc3|Cells | 4620 |
bgcolor=#e7dcc3|Faces | 8610 |
bgcolor=#e7dcc3|Edges | 7560 |
bgcolor=#e7dcc3|Vertices | 2520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great cellated heptapeton (Acronym: gacal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gacal.htm (x3x3x3x3x3o - gacal)]}}
= Coordinates =
The vertices of the steriruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t01234|150}}
Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
{{Heptapeton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} {{sfn whitelist| CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}