Stericated 8-simplexes#Steriruncinated 8-simplex
{{Short description|Class of eight-dimensional polytopes}}
{{Lead too short|date=September 2024}}
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center
|100px |100px |100px |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |100px |
align=center
|120px |120px |
colspan=4|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a stericated 8-simplex is a convex uniform 8-polytope with 4th order truncations (sterication) of the regular 8-simplex. There are 16 unique sterications for the 8-simplex including permutations of truncation, cantellation, and runcination.
{{clear}}
Stericated 8-simplex
{{-}}
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Stericated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,4{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 6300 |
style="background:#e7dcc3;"|Vertices | 630 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Coordinates =
The Cartesian coordinates of the vertices of the stericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t04|120}}
Bistericated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|bistericated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t1,5{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 12600 |
style="background:#e7dcc3;"|Vertices | 1260 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Coordinates =
The Cartesian coordinates of the vertices of the bistericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t15|120}}
Steritruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Steritruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,4{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Images =
{{8-simplex Coxeter plane graphs|t014|120}}
{{-}}
Bisteritruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bisteritruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t1,2,5{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Images =
{{8-simplex Coxeter plane graphs|t125|120}}
Stericantellated 8-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t024|120}}
Bistericantellated 8-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t135|120}}
Stericantitruncated 8-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t0124|120}}
Bistericantitruncated 8-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t1235|120}}
Steriruncinated 8-simplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t034|120}}
Bisteriruncinated 8-simplex
{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t145|120}}
Steriruncitruncated 8-simplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t0134|120}}
Bisteriruncitruncated 8-simplex
{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t1245|120}}
Steriruncicantellated 8-simplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t0234|120}}
Bisteriruncicantellated 8-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t1345|120}}
Steriruncicantitruncated 8-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t01234|120}}
Bisteriruncicantitruncated 8-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
= Images =
{{8-simplex Coxeter plane graphs|t12345|120}}
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
{{Enneazetton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} x3o3o3o3x3o3o3o, o3x3o3o3o3x3o3o
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}