Stickelberger's theorem

{{short description|Gives information about the Galois module structure of class groups of cyclotomic fields}}

In mathematics, Stickelberger's theorem is a result of algebraic number theory, which gives some information about the Galois module structure of class groups of cyclotomic fields. A special case was first proven by Ernst Kummer (#{{harvid) while the general result is due to Ludwig Stickelberger (#{{harvid).{{harvnb|Washington|1997|loc=Notes to chapter 6}}

The Stickelberger element and the Stickelberger ideal

Let {{mvar|Km}} denote the {{mvar|m}}th cyclotomic field, i.e. the extension of the rational numbers obtained by adjoining the {{mvar|m}}th roots of unity to \mathbb{Q} (where {{math|m ≥ 2}} is an integer). It is a Galois extension of \mathbb{Q} with Galois group {{mvar|Gm}} isomorphic to the Multiplicative group of integers modulo n {{math|(\mathbb{Z}/m\mathbb{Z})×}}. The Stickelberger element (of level {{mvar|m}} or of {{mvar|Km}}) is an element in the group ring {{math|\mathbb{Q}[Gm]}} and the Stickelberger ideal (of level {{mvar|m}} or of {{mvar|Km}}) is an ideal in the group ring {{math|\mathbb{Z}[Gm]}}. They are defined as follows. Let {{mvar|ζm}} denote a primitive root of unity. The isomorphism from {{math|(\mathbb{Z}/m\mathbb{Z})×}} to {{mvar|Gm}} is given by sending {{mvar|a}} to {{mvar|σa}} defined by the relation

:\sigma_a(\zeta_m) = \zeta_m^a.

The Stickelberger element of level {{mvar|m}} is defined as

:\theta(K_m)=\frac{1}{m}\underset{(a,m)=1}{\sum_{a=1}^m}a\cdot\sigma_a^{-1}\in\Q[G_m].

The Stickelberger ideal of level {{mvar|m}}, denoted {{math|I(Km)}}, is the set of integral multiples of {{math|θ(Km)}} which have integral coefficients, i.e.

:I(K_m)=\theta(K_m)\Z[G_m]\cap\Z[G_m].

More generally, if {{mvar|F}} be any Abelian number field whose Galois group over {{math|\mathbb{Q}}} is denoted {{mvar|GF}}, then the Stickelberger element of {{mvar|F}} and the Stickelberger ideal of {{mvar|F}} can be defined. By the Kronecker–Weber theorem there is an integer {{mvar|m}} such that {{mvar|F}} is contained in {{mvar|Km}}. Fix the least such {{mvar|m}} (this is the (finite part of the) conductor of {{mvar|F}} over {{math|\mathbb{Q}}}). There is a natural group homomorphism {{math|GmGF}} given by restriction, i.e. if {{math|σGm}}, its image in {{mvar|GF}} is its restriction to {{mvar|F}} denoted {{math|resmσ}}. The Stickelberger element of {{mvar|F}} is then defined as

:\theta(F)=\frac{1}{m}\underset{(a,m)=1}{\sum_{a=1}^m}a\cdot\mathrm{res}_m\sigma_a^{-1}\in\Q[G_F].

The Stickelberger ideal of {{mvar|F}}, denoted {{math|I(F)}}, is defined as in the case of {{mvar|Km}}, i.e.

:I(F)=\theta(F)\Z[G_F]\cap\Z[G_F].

In the special case where {{math|F {{=}} Km}}, the Stickelberger ideal {{math|I(Km)}} is generated by {{math|(aσa)θ(Km)}} as {{mvar|a}} varies over {{math|\mathbb{Z}/m\mathbb{Z}}}. This not true for general F.{{harvnb|Washington|1997}}, Lemma 6.9 and the comments following it

=Examples=

If {{mvar|F}} is a totally real field of conductor {{mvar|m}}, then{{harvnb|Washington|1997|loc=§6.2}}

:\theta(F)=\frac{\varphi(m)}{2[F:\Q]}\sum_{\sigma\in G_F}\sigma,

where {{mvar|φ}} is the Euler totient function and {{math|[F : \mathbb{Q}]}} is the degree of {{mvar|F}} over \mathbb{Q}.

Statement of the theorem

Stickelberger's Theorem{{harvnb|Washington|1997|loc=Theorem 6.10}}

Let {{mvar|F}} be an abelian number field. Then, the Stickelberger ideal of {{mvar|F}} annihilates the class group of {{mvar|F}}.

Note that {{math|θ(F)}} itself need not be an annihilator, but any multiple of it in {{math|\mathbb{Z}[GF]}} is.

Explicitly, the theorem is saying that if {{math|α ∈ \mathbb{Z}[GF]}} is such that

:\alpha\theta(F)=\sum_{\sigma\in G_F}a_\sigma\sigma\in\Z[G_F]

and if {{mvar|J}} is any fractional ideal of {{mvar|F}}, then

:\prod_{\sigma\in G_F}\sigma\left(J^{a_\sigma}\right)

is a principal ideal.

See also

Notes

{{reflist}}

References

  • {{cite book |last=Cohen |first=Henri |authorlink= Henri Cohen (number theorist) | year=2007 | title=Number Theory – Volume I: Tools and Diophantine Equations | isbn= 978-0-387-49922-2 | publisher=Springer-Verlag | series=Graduate Texts in Mathematics | volume=239| zbl=1119.11001 | pages=150–170 }}
  • Boas Erez, [http://www.fen.bilkent.edu.tr/~franz/publ/boas.pdf Darstellungen von Gruppen in der Algebraischen Zahlentheorie: eine Einführung]
  • {{cite book | zbl=0376.12002 | last=Fröhlich | first=A. | author-link=Albrecht Fröhlich | chapter=Stickelberger without Gauss sums | pages=589–607 | title=Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975 | editor1-last=Fröhlich | editor1-first=A. | editor1-link=Albrecht Fröhlich | publisher=Academic Press | year=1977 | isbn=0-12-268960-7 }}
  • {{cite book | last1=Ireland | first1=Kenneth | last2=Rosen | first2=Michael | title=A Classical Introduction to Modern Number Theory | place=New York | edition=2nd | publisher=Springer-Verlag | series = Graduate Texts in Mathematics | volume=84 | year=1990 | isbn=978-1-4419-3094-1 | mr=1070716 | doi=10.1007/978-1-4757-2103-4}}
  • {{Citation

| last=Kummer

| first=Ernst

| author-link=Ernst Kummer

| title=Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren

| year=1847

| journal=Journal für die Reine und Angewandte Mathematik

| volume=1847

| issue=35

| pages=327–367

| doi=10.1515/crll.1847.35.327

| s2cid=123230326

| url=https://zenodo.org/record/1448852

}}

  • {{Citation

| last=Stickelberger

| first=Ludwig

| author-link=Ludwig Stickelberger

| title=Ueber eine Verallgemeinerung der Kreistheilung

| url=http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=27547

| journal=Mathematische Annalen

| volume=37

| number=3

| year=1890

| pages=321–367

| mr=1510649 | jfm = 22.0100.01

| doi=10.1007/bf01721360

| s2cid=121239748

}}

  • {{Citation

| last=Washington

| first=Lawrence

| title=Introduction to Cyclotomic Fields

| edition=2

| publisher=Springer-Verlag

| location=Berlin, New York

| series=Graduate Texts in Mathematics

| isbn=978-0-387-94762-4

| mr=1421575

| year=1997

| volume=83

}}