Stokes stream function#Vorticity

{{for|two-dimensional flows|Stream function}}

File:Stokes sphere.svg in axisymmetric Stokes flow. At terminal velocity the drag force Fd balances the force Fg propelling the object.]]

In fluid dynamics, the Stokes stream function is used to describe the streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes stream function encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, the volume flux within this streamtube is constant, and all the streamlines of the flow are located on this surface. The velocity field associated with the Stokes stream function is solenoidal—it has zero divergence. This stream function is named in honor of George Gabriel Stokes.

Cylindrical coordinates

File:Cylindrical with grid.svg

Consider a cylindrical coordinate systemρ , φ , z ), with the z–axis the line around which the incompressible flow is axisymmetrical, φ the azimuthal angle and ρ the distance to the z–axis. Then the flow velocity components uρ and uz can be expressed in terms of the Stokes stream function \Psi by:Batchelor (1967), p. 78.

:

\begin{align}

u_\rho &= - \frac{1}{\rho}\, \frac{\partial \Psi}{\partial z},

\\

u_z &= + \frac{1}{\rho}\, \frac{\partial \Psi}{\partial \rho}.

\end{align}

The azimuthal velocity component uφ does not depend on the stream function. Due to the axisymmetry, all three velocity components ( uρ , uφ , uz ) only depend on ρ and z and not on the azimuth φ.

The volume flux, through the surface bounded by a constant value ψ of the Stokes stream function, is equal to 2π ψ.

Spherical coordinates

File:spherical with grid.svg

In spherical coordinatesr , θ , φ ), r is the radial distance from the origin, θ is the zenith angle and φ is the azimuthal angle. In axisymmetric flow, with θ = 0 the rotational symmetry axis, the quantities describing the flow are again independent of the azimuth φ. The flow velocity components ur and uθ are related to the Stokes stream function \Psi through:Batchelor (1967), p. 79.

:

\begin{align}

u_r &= + \frac{1}{r^2\, \sin \theta}\, \frac{\partial \Psi}{\partial \theta},

\\

u_\theta &= - \frac{1}{r\, \sin \theta}\, \frac{\partial \Psi}{\partial r}.

\end{align}

Again, the azimuthal velocity component uφ is not a function of the Stokes stream function ψ. The volume flux through a stream tube, bounded by a surface of constant ψ, equals 2π ψ, as before.

=Vorticity=

{{see also|Stream_function#Vorticity}}

The vorticity is defined as:

:\boldsymbol{\omega} = \nabla \times \boldsymbol{u} = \nabla \times \nabla \times \boldsymbol{\psi}, where \boldsymbol{\psi}=\frac{\Psi}{r\sin\theta}\boldsymbol{\hat \phi},

with \boldsymbol{\hat \phi} the unit vector in the \phi\,–direction.

:

class="toccolours collapsible collapsed" width="60%" style="text-align:left"

!Derivation of vorticity \boldsymbol{\omega} using a Stokes stream function

Consider the vorticity as defined by

:\boldsymbol{\omega} = \nabla \times \boldsymbol{u}.

From the definition of the curl in spherical coordinates:

:

\begin{align}

\omega_r &= {1 \over r\sin\theta}\left({\partial \over \partial \theta} \left( u_\phi\sin\theta \right) - {\partial u_\theta \over \partial \phi}\right) \boldsymbol{\hat r}, \\

\omega_\theta &= {1 \over r}\left({1 \over \sin\theta}{\partial u_r \over \partial \phi} - {\partial \over \partial r} \left( r u_\phi \right) \right) \boldsymbol{\hat \theta}, \\

\omega_\phi &= {1 \over r}\left({\partial \over \partial r} \left( r u_\theta \right) - {\partial u_r \over \partial \theta}\right) \boldsymbol{\hat \phi}.

\end{align}

First notice that the r and \theta components are equal to 0. Secondly substitute u_r and u_\theta into \omega_\phi. The result is:

:

\begin{align}

\omega_r &= 0, \\

\omega_\theta &= 0, \\

\omega_\phi &= {1 \over r}\left({\partial \over \partial r} \left( r \left(-\frac{1}{r \sin\theta}\frac{\partial\Psi}{\partial r}\right) \right) -

{\partial \over \partial \theta}\left(\frac{1}{r^2 \sin\theta}\frac{\partial\Psi}{\partial \theta}\right)\right).

\end{align}

Next the following algebra is performed:

:

\begin{align}

\omega_\phi &= {1 \over r}\left(-\frac{1}{\sin\theta}\left({\partial \over \partial r} \left(\frac{\partial\Psi}{\partial r}\right)\right) -

\frac{1}{r^2 }{\partial \over \partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial\Psi}{\partial \theta}\right)\right) \\

&= {1 \over r}\left(-\frac{1}{\sin\theta}\left(\frac{\partial^2\Psi}{\partial r^2}\right) -

\frac{\sin\theta}{r^2 \sin\theta}{\partial \over \partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial\Psi}{\partial \theta}\right)\right) \\

&= -\frac{1}{r\sin\theta} \left(\frac{\partial^2\Psi}{\partial r^2} + \frac{\sin\theta}{r^2}{\partial \over \partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial\Psi}{\partial \theta}\right)\right).

\end{align}

As a result, from the calculation the vorticity vector is found to be equal to:

:\boldsymbol{\omega} =

\begin{pmatrix}

0 \\[1ex]

0 \\[1ex]

\displaystyle -\frac{1}{r\sin\theta} \left(\frac{\partial^2\Psi}{\partial r^2} + \frac{\sin\theta}{r^2}{\partial \over \partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial\Psi}{\partial \theta}\right)\right)

\end{pmatrix}.

=Comparison with cylindrical=

The cylindrical and spherical coordinate systems are related through

:z = r\, \cos\theta\, {{pad|3em}} and {{pad|3em}} \rho = r\, \sin\theta.\,

Alternative definition with opposite sign

As explained in the general stream function article, definitions using an opposite sign convention – for the relationship between the Stokes stream function and flow velocity – are also in use.E.g. {{cite journal |last1=Brenner |year=1961 |journal=Chemical Engineering Science |volume=16 |pages=242–251 |doi=10.1016/0009-2509(61)80035-3 |title=The slow motion of a sphere through a viscous fluid towards a plane surface |first1=Howard |issue=3–4 |bibcode=1961ChEnS..16..242B }}

Zero divergence

In cylindrical coordinates, the divergence of the velocity field u becomes:Batchelor (1967), p. 602.

:

\begin{align}

\nabla \cdot \boldsymbol{u} &=

\frac{1}{\rho} \frac{\partial}{\partial \rho}\Bigl( \rho\, u_\rho \Bigr)

+ \frac{\partial u_z}{\partial z}

\\

&=

\frac{1}{\rho} \frac{\partial}{\partial \rho} \left( - \frac{\partial \Psi}{\partial z} \right)

+ \frac{\partial}{\partial z} \left( \frac{1}{\rho} \frac{\partial \Psi}{\partial \rho} \right)

= 0,

\end{align}

as expected for an incompressible flow.

And in spherical coordinates:Batchelor (1967), p. 601.

:

\begin{align}

\nabla \cdot \boldsymbol{u} &=

\frac{1}{r\, \sin\theta} \frac{\partial}{\partial \theta}( u_\theta\, \sin\theta)

+ \frac{1}{r^2} \frac{\partial}{\partial r}\Bigl( r^2\, u_r \Bigr)

\\

&=

\frac{1}{r\, \sin\theta} \frac{\partial}{\partial \theta} \left( - \frac{1}{r} \frac{\partial \Psi}{\partial r} \right)

+ \frac{1}{r^2} \frac{\partial}{\partial r} \left( \frac{1}{\sin\theta} \frac{\partial \Psi}{\partial \theta} \right)

= 0.

\end{align}

Streamlines as curves of constant stream function

From calculus it is known that the gradient vector \nabla \Psi is normal to the curve \Psi = C (see e.g. Level set#Level sets versus the gradient). If it is shown that everywhere \boldsymbol{u} \cdot \nabla \Psi = 0, using the formula for \boldsymbol{u} in terms of \Psi, then this proves that level curves of \Psi are streamlines.

;Cylindrical coordinates:

In cylindrical coordinates,

:\nabla \Psi = {\partial \Psi \over \partial \rho} \boldsymbol{e}_\rho + {\partial \Psi \over \partial z} \boldsymbol{e}_z.

and

:

\boldsymbol{u} = u_\rho \boldsymbol{e}_\rho + u_z \boldsymbol{e}_z = - {1 \over \rho} {\partial \Psi \over \partial z} \boldsymbol{e}_\rho + {1 \over \rho} {\partial \Psi \over \partial \rho} \boldsymbol{e}_z.

So that

:\nabla \Psi \cdot \boldsymbol{u} = {\partial \Psi \over \partial \rho} (- {1 \over \rho} {\partial \Psi \over \partial z}) + {\partial \Psi \over \partial z} {1 \over \rho} {\partial \Psi \over \partial \rho} = 0.

;Spherical coordinates:

And in spherical coordinates

:\nabla \Psi = {\partial \Psi \over \partial r} \boldsymbol{e}_r + {1 \over r} {\partial \Psi \over \partial \theta} \boldsymbol{e}_\theta

and

:

\boldsymbol{u} = u_r \boldsymbol{e}_r + u_\theta \boldsymbol{e}_\theta = {1 \over r^2 \sin \theta} {\partial \Psi \over \partial \theta} \boldsymbol{e}_r - {1 \over r \sin \theta} {\partial \Psi \over \partial r} \boldsymbol{e}_\theta .

So that

:\nabla \Psi \cdot \boldsymbol{u} = {\partial \Psi \over \partial r} \cdot {1 \over r^2 \sin \theta} {\partial \Psi \over \partial \theta} + {1 \over r} {\partial \Psi \over \partial \theta} \cdot \Big( - {1 \over r \sin \theta} {\partial \Psi \over \partial r} \Big) = 0 .

Notes

{{reflist}}

References

  • {{cite book | first=G.K. | last=Batchelor | authorlink=George Batchelor | title=An Introduction to Fluid Dynamics | year=1967 | publisher=Cambridge University Press | isbn=0-521-66396-2 }}
  • {{cite book | first=H. | last=Lamb | authorlink=Horace Lamb | year=1994 | title=Hydrodynamics | publisher=Cambridge University Press | edition=6th| isbn=978-0-521-45868-9 }} Originally published in 1879, the 6th extended edition appeared first in 1932.
  • {{cite journal | first=G.G. | last=Stokes | authorlink=George Gabriel Stokes | year= 1842 | title= On the steady motion of incompressible fluids | journal= Transactions of the Cambridge Philosophical Society | volume= 7 | pages= 439–453 | bibcode=1848TCaPS...7..439S }}
    Reprinted in: {{cite book | first= G.G. | last=Stokes | year= 1880 | title= Mathematical and Physical Papers, Volume I | publisher= Cambridge University Press | pages= [https://archive.org/details/mathphyspapers01stokrich/page/n18 1]–16 | url= https://archive.org/details/mathphyspapers01stokrich }}

{{DEFAULTSORT:Stokes stream function}}

Category:Fluid dynamics