Structural gene
{{More citations needed|date=February 2017}}
A structural gene is a gene that codes for any RNA or protein product other than a regulatory factor (i.e. regulatory protein). Structural genes are typically viewed as those containing sequences of DNA corresponding to the amino acids of a protein that will be produced, as long as said protein does not function to regulate gene expression. Structural gene products include enzymes and structural proteins. Also encoded by structural genes are non-coding RNAs, such as rRNAs and tRNAs (but excluding any regulatory miRNAs and siRNAs).
The distinction between structural and regulatory genes
can be traced back to 1959 and work by Pardee, Jacob, and Monod—the so-called PaJaMo experiment—on the lac operon and the synthesis of proteins in E. coli. In that system, a single regulatory protein was detected that affected the transcription of the other proteins now known to compose the lac operon.{{Cite journal|last1=Pardee|first1=Arthur B.|last2=Jacob|first2=François|last3=Monod|first3=Jacques|date=1959-06-01|title=The genetic control and cytoplasmic expression of "Inducibility" in the synthesis of β-galactosidase by E. coli|journal=Journal of Molecular Biology|volume=1|issue=2|pages=165–178|doi=10.1016/S0022-2836(59)80045-0}}
Placement in the genome
In prokaryotes, structural genes of related function are typically adjacent to one another on a single strand of DNA, forming an operon. This permits simpler regulation of gene expression, as a single regulatory factor can affect transcription of all associated genes. This is best illustrated by the well-studied lac operon, in which three structural genes (lacZ, lacY, and lacA) are all regulated by a single promoter and a single operator. Prokaryotic structural genes are transcribed into a polycistronic mRNA and subsequently translated.{{Cite book|url=https://books.google.com/books?id=ppRmC9-a6JQC|title=The Lac Operon: A Short History of a Genetic Paradigm|last=Müller-Hill|first=Benno|date=1996-01-01|publisher=Walter de Gruyter|isbn=9783110148305|language=en}}
In eukaryotes, structural genes are not sequentially placed. Each gene is instead composed of coding exons and interspersed non-coding introns. Regulatory sequences are typically found in non-coding regions upstream and downstream from the gene. Structural gene mRNAs must be spliced prior to translation to remove intronic sequences. This in turn lends itself to the eukaryotic phenomenon of alternative splicing, in which a single mRNA from a single structural gene can produce several different proteins based on which exons are included. Despite the complexity of this process, it is estimated that up to 94% of human genes are spliced in some way.{{Cite journal|last1=Wang|first1=Eric T.|last2=Sandberg|first2=Rickard|last3=Luo|first3=Shujun|last4=Khrebtukova|first4=Irina|last5=Zhang|first5=Lu|last6=Mayr|first6=Christine|last7=Kingsmore|first7=Stephen F.|last8=Schroth|first8=Gary P.|last9=Burge|first9=Christopher B.|year=2008|title=Alternative isoform regulation in human tissue transcriptomes|journal=Nature|volume=456|issue=7221|pages=470–476|doi=10.1038/nature07509|pmc=2593745|pmid=18978772|bibcode=2008Natur.456..470W}} Furthermore, different splicing patterns occur in different tissue types.{{Cite journal|last1=Yeo|first1=Gene|last2=Holste|first2=Dirk|last3=Kreiman|first3=Gabriel|last4=Burge|first4=Christopher B.|date=2004-01-01|title=Variation in alternative splicing across human tissues|journal=Genome Biology|volume=5|issue=10|pages=R74|doi=10.1186/gb-2004-5-10-r74|issn=1474-760X|pmc=545594|pmid=15461793 |doi-access=free }}
An exception to this layout in eukaryotes are genes for histone proteins, which lack introns entirely.{{Cite journal|last=Makałowski|first=W.|date=2001-01-01|title=The human genome structure and organization|journal=Acta Biochimica Polonica|volume=48|issue=3|pages=587–598|doi=10.18388/abp.2001_3893|issn=0001-527X|pmid=11833767|doi-access=free}} Also distinct are the rDNA clusters of structural genes, in which 28S, 5.8S, and 18S sequences are adjacent, separated by short internally transcribed spacers, and likewise the 45S rDNA occurs five distinct places on the genome, but is clustered into adjacent repeats. In eubacteria these genes are organized into operons. However, in archaebacteria these genes are non-adjacent and exhibit no linkage.{{Cite journal|last1=Tu|first1=J|last2=Zillig|first2=W|date=1982-11-25|title=Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.|journal=Nucleic Acids Research|volume=10|issue=22|pages=7231–7245|issn=0305-1048|pmc=327000|pmid=7155894|doi=10.1093/nar/10.22.7231}}
Role in human disease
The identification of the genetic basis for the causative agent of a disease can be an important component of understanding its effects and spread. Location and content of structural genes can elucidate the evolution of virulence,{{Cite journal|last1=Sreevatsan|first1=Srinand|last2=Pan|first2=Xi|last3=Stockbauer|first3=Kathryn E.|last4=Connell|first4=Nancy D.|last5=Kreiswirth|first5=Barry N.|last6=Whittam|first6=Thomas S.|last7=Musser|first7=James M.|date=1997-09-02|title=Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination|journal=Proceedings of the National Academy of Sciences|language=en|volume=94|issue=18|pages=9869–9874|issn=0027-8424|pmc=23284|pmid=9275218|doi=10.1073/pnas.94.18.9869|bibcode=1997PNAS...94.9869S|doi-access=free}} as well as provide necessary information for treatment. Likewise understanding the specific changes in structural gene sequences underlying a gain or loss of virulence aids in understanding the mechanism by which diseases affect their hosts.{{Cite journal|last1=Maharaj|first1=Payal D.|last2=Anishchenko|first2=Michael|last3=Langevin|first3=Stanley A.|last4=Fang|first4=Ying|last5=Reisen|first5=William K.|last6=Brault|first6=Aaron C.|date=2012-01-01|title=Structural gene (prME) chimeras of St Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes|journal=Journal of General Virology|volume=93|issue=1|pages=39–49|doi=10.1099/vir.0.033159-0|pmc=3352334|pmid=21940408}}
For example, Yersinia pestis (the bubonic plague) was found to carry several virulence and inflammation-related structural genes on plasmids.{{Cite journal|last=Brubaker|first=Robert R.|date=2007-08-01|title=How the structural gene products of Yersinia pestis relate to virulence|journal=Future Microbiology|volume=2|issue=4|pages=377–385|doi=10.2217/17460913.2.4.377|issn=1746-0921|pmid=17683274}} Likewise, the structural gene responsible for tetanus was determined to be carried on a plasmid as well.{{Cite journal|last1=Finn|first1=C. W.|last2=Silver|first2=R. P.|last3=Habig|first3=W. H.|last4=Hardegree|first4=M. C.|last5=Zon|first5=G.|last6=Garon|first6=C. F.|date=1984-05-25|title=The structural gene for tetanus neurotoxin is on a plasmid|journal=Science|volume=224|issue=4651|pages=881–884|issn=0036-8075|pmid=6326263|doi=10.1126/science.6326263|bibcode=1984Sci...224..881F}} Diphtheria is caused by a bacterium, but only after that bacterium has been infected by a bacteriophage carrying the structural genes for the toxin.{{Cite journal|last1=Greenfield|first1=L.|last2=Bjorn|first2=M. J.|last3=Horn|first3=G.|last4=Fong|first4=D.|last5=Buck|first5=G. A.|last6=Collier|first6=R. J.|last7=Kaplan|first7=D. A.|date=1983-11-01|title=Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=80|issue=22|pages=6853–6857|issn=0027-8424|pmc=390084|pmid=6316330|doi=10.1073/pnas.80.22.6853|bibcode=1983PNAS...80.6853G|doi-access=free}}
In Herpes simplex virus, the structural gene sequence responsible for virulence was found in two locations in the genome despite only one location actually producing the viral gene product. This was hypothesized to serve as a potential mechanism for strains to regain virulence if lost through mutation.{{Cite journal|last1=Knipe|first1=David|last2=Ruyechan|first2=William|last3=Honess|first3=Robert|last4=Roizman|first4=Bernard|year=1979|title=Molecular genetics of Herpes Simplex Virus: The terminal sequences of the L and S components are obligatorily identical and constitute a part of structural gene mapping predominantly in the S component|url=http://knipelab.med.harvard.edu/pdfs/15.%201979%20Knipe%20et%20al..pdf|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=76|issue=9|pages=4534–4538|doi=10.1073/pnas.76.9.4534|pmid=228300|pmc=411612|bibcode=1979PNAS...76.4534K|doi-access=free}}
Understanding the specific changes in structural genes underlying a gain or loss of virulence is a necessary step in the formation of specific treatments, as well the study of possible medicinal uses of toxins.
Phylogenetics
As far back as 1974, DNA sequence similarity was recognized as a valuable tool for determining relationships among taxa.{{Cite book|last=Moore|first=R. L.|chapter=Nucleic Acid Reassociation as a Guide to Genetic Relatedness among Bacteria |title=Modern Aspects of Electrochemistry|date=1974-01-01|series=Current Topics in Microbiology and Immunology|volume=64|pages=105–128|issn=0070-217X|pmid=4602647|doi=10.1007/978-3-642-65848-8_4|isbn=978-3-642-65850-1}} Structural genes in general are more highly conserved due to functional constraint, and so can prove useful in examinations of more disparate taxa. Original analyses enriched samples for structural genes via hybridization to mRNA.{{Cite journal|last1=Angerer|first1=R. C.|last2=Davidson|first2=E. H.|last3=Britten|first3=R. J.|date=1976-07-08|title=Single copy DNA and structural gene sequence relationships among four sea urchin species|journal=Chromosoma|volume=56|issue=3|pages=213–226|issn=0009-5915|pmid=964102|doi=10.1007/bf00293186|s2cid=26007034}}
More recent phylogenetic approaches focused on structural genes of known function, conserved to varying degrees. rRNA sequences frequent targets, as they are conserved in all species.{{Cite journal|last1=Pruesse|first1=E.|last2=Quast|first2=C.|last3=Knittel|first3=K.|last4=Fuchs|first4=B. M.|last5=Ludwig|first5=W.|last6=Peplies|first6=J.|last7=Glockner|first7=F. O.|date=2007-12-01|title=SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB|journal=Nucleic Acids Research|language=en|volume=35|issue=21|pages=7188–7196|doi=10.1093/nar/gkm864|issn=0305-1048|pmc=2175337|pmid=17947321}} Microbiology has specifically targeted the 16S gene to determine species level differences.{{Cite journal|last1=Chun|first1=Jongsik|last2=Lee|first2=Jae-Hak|last3=Jung|first3=Yoonyoung|last4=Kim|first4=Myungjin|last5=Kim|first5=Seil|last6=Kim|first6=Byung Kwon|last7=Lim|first7=Young-Woon|date=2007-01-01|title=EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences|journal=International Journal of Systematic and Evolutionary Microbiology|volume=57|issue=10|pages=2259–2261|doi=10.1099/ijs.0.64915-0|pmid=17911292|doi-access=free}} In higher-order taxa, COI is now considered the “barcode of life,” and is applied for most biological identification.{{Cite journal|last1=Hebert|first1=Paul D. N.|last2=Cywinska|first2=Alina|last3=Ball|first3=Shelley L.|last4=deWaard|first4=Jeremy R.|date=2003-02-07|title=Biological identifications through DNA barcodes|journal=Proceedings of the Royal Society of London B: Biological Sciences|language=en|volume=270|issue=1512|pages=313–321|doi=10.1098/rspb.2002.2218|issn=0962-8452|pmc=1691236|pmid=12614582}}
Debate
Despite the widespread classification of genes as either structural or regulatory, these categories are not an absolute division. Recent genetic discoveries call into question the distinction between regulatory and structural genes,{{Cite journal|last=Piro|first=Rosario Michael|date=2011-03-29|title=Are all genes regulatory genes?|journal=Biology & Philosophy|language=en|volume=26|issue=4|pages=595–602|doi=10.1007/s10539-011-9251-9|s2cid=16289510|issn=0169-3867}} suggesting greater complexity. Structural gene expression is regulated by numerous factors including epigenetics (e.g. methylation) and RNA interference (RNAi). Structural genes and even regulatory genes themselves can be epigenetically regulated identically, so not all regulation is coded for by “regulatory genes”.
There are also examples of proteins that do not decidedly fit either category, such as chaperone proteins. These proteins aid in the folding of other proteins, a seemingly regulatory role.{{Cite journal|last1=Hendrick|first1=J. P.|last2=Hartl|first2=F. U.|date=1995-12-01|title=The role of molecular chaperones in protein folding|journal=FASEB Journal|volume=9|issue=15|pages=1559–1569|issn=0892-6638|pmid=8529835|doi=10.1096/fasebj.9.15.8529835|doi-access=free |s2cid=33498269}}{{Cite journal|last=Saibil|first=Helen|date=2013-10-01|title=Chaperone machines for protein folding, unfolding and disaggregation|journal=Nature Reviews Molecular Cell Biology|language=en|volume=14|issue=10|pages=630–642|doi=10.1038/nrm3658|issn=1471-0072|pmc=4340576|pmid=24026055}} Yet these same proteins also aid in the movement of their chaperoned proteins across membranes,{{Cite journal|last1=Koll|first1=H.|last2=Guiard|first2=B.|last3=Rassow|first3=J.|last4=Ostermann|first4=J.|last5=Horwich|first5=A. L.|last6=Neupert|first6=W.|last7=Hartl|first7=F. U.|date=1992-03-20|title=Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space|journal=Cell|volume=68|issue=6|pages=1163–1175|issn=0092-8674|pmid=1347713|doi=10.1016/0092-8674(92)90086-r|s2cid=7430067|url=https://epub.ub.uni-muenchen.de/7621/1/Neupert_Walter_7621.pdf}} and have now been implicated in immune responses (see Hsp60) {{Cite journal|last1=Hansen|first1=Jens J.|last2=Bross|first2=Peter|last3=Westergaard|first3=Majken|last4=Nielsen|first4=Marit Nyholm|last5=Eiberg|first5=Hans|last6=Børglum|first6=Anders D.|last7=Mogensen|first7=Jens|last8=Kristiansen|first8=Karsten|last9=Bolund|first9=Lars|date=2003-01-01|title=Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter|journal=Human Genetics|volume=112|issue=1|pages=71–77|doi=10.1007/s00439-002-0837-9|issn=0340-6717|pmid=12483302|s2cid=25856774}} and in the apoptotic pathway (see Hsp70).{{Cite journal|last1=Cappello|first1=Francesco|last2=Di Stefano|first2=Antonino|last3=David|first3=Sabrina|last4=Rappa|first4=Francesco|last5=Anzalone|first5=Rita|last6=La Rocca|first6=Giampiero|last7=D'Anna|first7=Silvestro E.|last8=Magno|first8=Francesca|last9=Donner|first9=Claudio F.|date=2006-11-15|title=Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease|journal=Cancer|volume=107|issue=10|pages=2417–2424|doi=10.1002/cncr.22265|issn=0008-543X|pmid=17048249|doi-access=free}}
More recently, microRNAs were found to be produced from the internal transcribed spacers of rRNA genes.{{Cite journal|last1=Son|first1=Dong Ju|last2=Kumar|first2=Sandeep|last3=Takabe|first3=Wakako|last4=Kim|first4=Chan Woo|last5=Ni|first5=Chih-Wen|last6=Alberts-Grill|first6=Noah|last7=Jang|first7=In-Hwan|last8=Kim|first8=Sangok|last9=Kim|first9=Wankyu|date=2013-12-18|title=The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis|journal=Nature Communications|language=en|volume=4|pages=3000|doi=10.1038/ncomms4000|issn=2041-1723|pmc=3923891|pmid=24346612|bibcode=2013NatCo...4.3000S}} Thus an internal component of a structural gene is, in fact, regulatory. Binding sites for microRNAs were also detected within coding sequences of genes. Typically interfering RNAs target the 3’UTR, but inclusion of binding sites within the sequence of the protein itself allows the transcripts of these proteins to effectively regulate the microRNAs within the cell. This interaction was demonstrated to have an effect on expression, and thus again a structural gene contains a regulatory component.{{Cite journal|last1=Forman|first1=Joshua J.|last2=Coller|first2=Hilary A.|date=2010-04-15|title=The code within the code: microRNAs target coding regions|journal=Cell Cycle|volume=9|issue=8|pages=1533–1541|doi=10.4161/cc.9.8.11202|issn=1538-4101|pmc=2936675|pmid=20372064}}
References
{{reflist}}
External links
- [https://phet.colorado.edu/en/simulation/legacy/gene-machine-lac-operon Model of Lac Operon]
- [http://www.thesgc.org The SGC protein browser]
- [https://www.arb-silva.de/ SILVA database of aligned rRNA sequence data]
- [http://www.barcodeoflife.org Barcode of Life database of COI barcoded species]
{{DEFAULTSORT:Structural Gene}}