Structural identifiability
{{Short description|Dynamical system property}}
In the area of system identification, a dynamical system is structurally identifiable if it is possible to infer its unknown parameters by measuring its output over time. This problem arises in many branch of applied mathematics, since dynamical systems (such as the ones described by ordinary differential equations) are commonly utilized to model physical processes and these models contain unknown parameters that are typically estimated using experimental data.{{Cite journal |last1=Miao |first1=Hongyu |last2=Xia |first2=Xiaohua |last3=Perelson |first3=Alan S. |last4=Wu |first4=Hulin |date=2011 |title=On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics |journal=SIAM Review |language=en |volume=53 |issue=1 |pages=3–39 |doi=10.1137/090757009 |issn=0036-1445 |pmc=3140286 |pmid=21785515}}{{erratum|doi=10.1137/23M1568958|checked=yes}}{{Cite journal |last1=Wensing |first1=Patrick M. |last2=Niemeyer |first2=Günter |last3=Slotine |first3=Jean-Jacques E. |date=2024 |title=A geometric characterization of observability in inertial parameter identification |url=https://journals.sagepub.com/doi/10.1177/02783649241258215 |journal=The International Journal of Robotics Research |language=en |arxiv=1711.03896 |doi=10.1177/02783649241258215 |issn=0278-3649}}
However, in certain cases, the model structure may not permit a unique solution for this estimation problem, even when the data is continuous and free from noise. To avoid potential issues, it is recommended to verify the uniqueness of the solution in advance, prior to conducting any actual experiments.{{Cite journal |last1=Villaverde |first1=Alejandro F |last2=Pathirana |first2=Dilan |last3=Fröhlich |first3=Fabian |last4=Hasenauer |first4=Jan |last5=Banga |first5=Julio R |date=2022-01-17 |title=A protocol for dynamic model calibration |journal=Briefings in Bioinformatics |language=en |volume=23 |issue=1 |doi=10.1093/bib/bbab387 |pmid=34619769 |pmc=8769694 |issn=1467-5463}} The lack of structural identifiability implies that there are multiple solutions for the problem of system identification, and the impossibility of distinguishing between these solutions suggests that the system has poor forecasting power as a model.{{Cite journal |last1=Fiacchini |first1=Mirko |last2=Alamir |first2=Mazen |date=2021 |title=The Ockham's razor applied to COVID-19 model fitting French data |journal=Annual Reviews in Control |language=en |volume=51 |pages=500–510 |doi=10.1016/j.arcontrol.2021.01.002 |pmc=7846253 |pmid=33551664}} On the other hand, control systems have been proposed with the goal of rendering the closed-loop system unidentifiable, decreasing its susceptibility to covert attacks targeting cyber-physical systems.{{cite arXiv |eprint=2308.15493 |first1=Xiangyu |last1=Mao |first2=Jianping |last2=He |title=Unidentifiability of System Dynamics: Conditions and Controller Design |year=2023|class=eess.SY }}
Examples
= Linear time-invariant system =
Consider a linear time-invariant system with the following state-space representation:
\dot{x}_1(t) &=-\theta_1 x_1, \\
\dot{x}_2(t) &=\theta_1 x_1, \\
y(t) &= \theta_2 x_2,
\end{align}
and with initial conditions given by and . The solution of the output is
which implies that the parameters and are not structurally identifiable. For instance, the parameters generates the same output as the parameters .
= Non-linear system =
A model of a possible glucose homeostasis mechanism is given by the differential equations{{Cite journal |last1=Karin |first1=Omer |last2=Swisa |first2=Avital |last3=Glaser |first3=Benjamin |last4=Dor |first4=Yuval |last5=Alon |first5=Uri |date=2016 |title=Dynamical compensation in physiological circuits |journal=Molecular Systems Biology |language=en |volume=12 |issue=11 |pages=886 |doi=10.15252/msb.20167216 |issn=1744-4292 |pmc=5147051 |pmid=27875241}}
& \dot{G}=u(0)+u-(c+s_\mathrm{i} \, I) G, \\
& \dot{\beta}=\beta \left(\frac{1.4583 \cdot 10^{-5}}{1+\left(\frac{8.4}{G}\right)^{1.7}}-\frac{1.7361 \cdot 10^{-5}}{1+\left(\frac{G}{8.4}\right)^{8.5}}\right), \\
& \dot{I}=p \, \beta \, \frac{G^2}{\alpha^2+G^2}-\gamma \, I,
\end{aligned}
where (c, si, p, α, γ) are parameters of the system, and the states are the plasma glucose concentration G, the plasma insulin concentration I, and the beta-cell functional mass β. It is possible to show that the parameters p and si are not structurally identifiable: any numerical choice of parameters p and si that have the same product psi are indistinguishable.
Practical identifiability
Structural identifiability is assessed by analyzing the dynamical equations of the system, and does not take into account possible noises in the measurement of the output. In contrast, practical non-identifiability also takes noises into account.{{Cite journal |last1=Raue |first1=A. |last2=Kreutz |first2=C. |last3=Maiwald |first3=T. |last4=Bachmann |first4=J. |last5=Schilling |first5=M. |last6=Klingmüller |first6=U. |last7=Timmer |first7=J. |date=2009-08-01 |title=Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood |journal=Bioinformatics |language=en |volume=25 |issue=15 |pages=1923–1929 |doi=10.1093/bioinformatics/btp358 |issn=1460-2059 |pmid=19505944|doi-access=free |url=https://opus.bibliothek.uni-augsburg.de/opus4/files/113236/113236.pdf }}
Software
There exist many software that can be used for analyzing the identifiability of a system, including non-linear systems:{{Cite journal|last1=Barreiro |first1=Xabier Rey |last2=Villaverde |first2=Alejandro F. |date=2023-01-31 |title=Benchmarking tools for a priori identifiability analysis |url=https://doi.org/10.1093/bioinformatics/btad065 |journal=Bioinformatics |language=en |volume=39 |issue=2 |pages=btad065 |doi=10.1093/bioinformatics/btad065 |pmid=36721336 |pmc=9913045 |issn=1367-4811}}
- PottersWheel: MATLAB toolbox that uses profile likelihood for structural and practical identifiability analysis.
- STRIKE-GOLDD: MATLAB toolbox for structural identifiability analysis.{{Cite arXiv |eprint=2207.07346 |class=eess.SY |first1=Sandra |last1=Díaz-Seoane |first2=Xabier |last2=Rey-Barreiro |title=STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability |date=2022-07-15 |last3=Villaverde |first3=Alejandro F.}}
- [https://github.com/SciML/StructuralIdentifiability.jl StructuralIdentifiability.jl]: Julia library for assessing structural parameter identifiability.{{Cite journal |last1=Dong |first1=Ruiwen |last2=Goodbrake |first2=Christian |last3=Harrington |first3=Heather A. |last4=Pogudin |first4=Gleb |date=2023-03-31 |title=Differential Elimination for Dynamical Models via Projections with Applications to Structural Identifiability |url=https://epubs.siam.org/doi/10.1137/22M1469067 |journal=SIAM Journal on Applied Algebra and Geometry |language=en |volume=7 |issue=1 |pages=194–235 |doi=10.1137/22M1469067 |arxiv=2111.00991 |s2cid=245650629 |issn=2470-6566}}
- [https://github.com/insysbio/LikelihoodProfiler.jl LikelihoodProfiler.jl]: Julia library for practical identifiability analysis.{{Cite journal |last1=Borisov |first1=Ivan |last2=Metelkin |first2=Evgeny |date=2020 |editor-last=Beard |editor-first=Daniel A. |title=Confidence intervals by constrained optimization—An algorithm and software package for practical identifiability analysis in systems biology |journal=PLOS Computational Biology |language=en |volume=16 |issue=12 |pages=e1008495 |doi=10.1371/journal.pcbi.1008495 |doi-access=free |issn=1553-7358 |pmc=7785248 |pmid=33347435}}
See also
References
{{reflist}}