Struve function
File:Mplwp Struve function05.svg
In mathematics, the Struve functions {{math|Hα(x)}}, are solutions {{math|y(x)}} of the non-homogeneous Bessel's differential equation:
:
introduced by {{harvs|txt|last=Struve|first=Hermann|authorlink=Hermann Struve|year=1882}}. The complex number α is the order of the Struve function, and is often an integer.
And further defined its second-kind version as , where is the Neumann function.
The modified Struve functions {{math|Lα(x)}} are equal to {{math|−ie−iαπ / 2Hα(ix)}} and are solutions {{math|y(x)}} of the non-homogeneous Bessel's differential equation:
And further defined its second-kind version as , where is the modified Bessel function.
Definitions
Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the Bessel functions, and the particular solution may be chosen as the corresponding Struve function.
=Power series expansion=
Struve functions, denoted as {{math|Hα(z)}} have the power series form
:
where {{math|Γ(z)}} is the gamma function.
The modified Struve functions, denoted {{math|Lα(z)}}, have the following power series form
=Integral form=
Another definition of the Struve function, for values of {{mvar|α}} satisfying {{math|Re(α) > − {{sfrac|1|2}}}}, is possible expressing in term of the Poisson's integral representation:
Asymptotic forms
For small {{mvar|x}}, the power series expansion is given above.
For large {{mvar|x}}, one obtains:
:
where {{math|Yα(x)}} is the Neumann function.
Properties
The Struve functions satisfy the following recurrence relations:
:
\mathbf{H}_{\alpha -1}(x) + \mathbf{H}_{\alpha+1}(x) &= \frac{2\alpha}{x} \mathbf{H}_\alpha (x) + \frac{\left (\frac{x}{2}\right)^{\alpha}}{\sqrt{\pi}\Gamma \left (\alpha + \frac{3}{2} \right )}, \\
\mathbf{H}_{\alpha -1}(x) - \mathbf{H}_{\alpha+1}(x) &= 2 \frac{d}{dx} \left (\mathbf{H}_\alpha(x) \right) - \frac{ \left( \frac{x}{2} \right)^\alpha}{\sqrt{\pi}\Gamma \left (\alpha + \frac{3}{2} \right )}.
\end{align}
Relation to other functions
Struve functions of integer order can be expressed in terms of Weber functions {{math|En}} and vice versa: if {{mvar|n}} is a non-negative integer then
:
\mathbf{E}_n(z) &= \frac{1}{\pi} \sum_{k=0}^{\left \lfloor \frac{n-1}{2} \right \rfloor} \frac{\Gamma \left (k+ \frac{1}{2} \right) \left (\frac{z}{2} \right )^{n-2k-1}}{\Gamma \left (n- k + \frac{1}{2}\right )} -\mathbf{H}_n(z),\\
\mathbf{E}_{-n}(z) &= \frac{(-1)^{n+1}}{\pi}\sum_{k=0}^{\left \lceil \frac{n-3}{2} \right \rceil} \frac{\Gamma(n-k-\frac{1}{2}) \left (\frac{z}{2} \right )^{-n+2k+1}}{\Gamma \left (k+ \frac{3}{2} \right)}-\mathbf{H}_{-n}(z).
\end{align}
Struve functions of order {{math|n + {{sfrac|1|2}}}} where {{mvar|n}} is an integer can be expressed in terms of elementary functions. In particular if {{mvar|n}} is a non-negative integer then
:
where the right hand side is a spherical Bessel function.
Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function {{math|1F2}}:
:
Applications
The Struve and Weber functions were shown to have an application to beamforming in.,K. Buchanan, C. Flores, S. Wheeland, J. Jensen, D. Grayson and G. Huff, "Transmit beamforming for radar applications using circularly tapered random arrays," 2017 IEEE Radar Conference (RadarConf), 2017, pp. 0112-0117, doi: 10.1109/RADAR.2017.7944181 and in describing the effect of confining interface on Brownian motion of colloidal particles at low Reynolds numbers.B. U. Felderhof, "Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion." The Journal of Physical Chemistry B 109.45, 2005, pp. 21406-21412
References
{{Reflist}}
- {{cite journal|doi=10.1121/1.1564019 |author=R. M. Aarts and Augustus J. E. M. Janssen |title=Approximation of the Struve function H1 occurring in impedance calculations |journal= J. Acoust. Soc. Am. |volume= 113 |pages= 2635–2637 |year= 2003 |pmid=12765381 |issue=5 |bibcode = 2003ASAJ..113.2635A }}
- {{cite journal|doi=10.1121/1.4968792 |pmid=28040027 |author=R. M. Aarts and Augustus J. E. M. Janssen |title=Efficient approximation of the Struve functions Hn occurring in the calculation of sound radiation quantities |journal= J. Acoust. Soc. Am. |volume= 140 |pages= 4154–4160 |year= 2016 |issue=6 |bibcode=2016ASAJ..140.4154A|url=https://research.tue.nl/nl/publications/efficient-approximation-of-the-struve-functions-hn-occurring-in-the-calculation-of-sound-radiation-quantaties(c68b8858-9c9d-4ff2-bf39-e888bb638527).html }}
- {{AS ref|12|496}}
- {{springer|id=S/s090700|first=A. B. |last=Ivanov}}
- {{dlmf|id=11|Struve and Related Functions|first=R. B. |last=Paris}}
- {{cite journal|doi=10.1002/andp.18822531319 |first=H. |last=Struve |title=Beitrag zur Theorie der Diffraction an Fernröhren |journal= Annalen der Physik und Chemie |volume= 17|issue=13 |year=1882 |pages= 1008–1016|bibcode = 1882AnP...253.1008S |url=https://zenodo.org/record/1423790 }}
External links
- [http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/introductions/Struves/ Struve functions] at [http://functions.wolfram.com the Wolfram functions site].
{{DEFAULTSORT:Struve Function}}