Swift J1644+57

{{Short description|Tidal disruption event in the constellation Draco}}

{{Infobox astronomical event

| duration = years

| ra = {{RA|16|44|49.97}}

| dec = {{DEC|+57|34|59.7}}{{cite journal|title=NASA Telescopes Join Forces to Observe Unprecedented Explosion|journal=Chandra Press Release|pages=7|url=http://hubblesite.org/newscenter/archive/releases/2011/10/fastfacts/|access-date=2011-04-21|bibcode=2011cxo..pres....7.|year=2011}}

| energy = 5{{e|48}} ergs (assuming beamed emission)

}}

Swift J164449.3+573451, initially referred to as GRB 110328A, and sometimes abbreviated to Sw J1644+57, was a tidal disruption event (TDE), the destruction of a star by a supermassive black hole. It was first detected by the Swift Gamma-Ray Burst Mission on March 28, 2011.{{cite journal|last=Joshua S. Bloom|display-authors=etal|title=GRB 110328A / Swift J164449.3+573451: X-ray analysis and a mini-blazar analogy|journal=GRB Coordinates Network|volume=11847|pages=1|url=http://gcn.gsfc.nasa.gov/gcn3/11847.gcn3|date=2011-03-30|bibcode=2011GCN.11847....1B}} The event occurred in the center of a small galaxy{{Which|date=August 2024}} in the Draco constellation, about 3.8 billion light-years away. It was the first confirmed jetted tidal disruption event and is the most luminous and energetic TDE recorded.{{cite web|title=GRB 110328A: Chandra Observes Extraordinary Event|url=http://chandra.harvard.edu/photo/2011/grb110328/|publisher=Harvard-Smithsonian Center for Astrophysics|access-date=2011-04-21}}

Relativistic jet

Swift J1644+57 occurred when a star wandered too close to the central supermassive black hole in the galaxy, and was gravitationally torn apart, forming an accretion disk from stellar material.{{cite arXiv|author1=Barres de Almeida |author2=De Angelis |title=Enhanced emission from GRB 110328A could be evidence for tidal disruption of a star|eprint=1104.2528|date=2011-04-13|class=astro-ph.HE }}{{cite web|last=Coco |first=Alejandro |title=The Most Intense Cosmic Explosion Ever Seen |url=http://scienceray.com/physics/the-most-intense-cosmic-explosion-ever-seen/ |access-date=2011-04-22 |publisher=Scienceray |date=2011-04-10 |url-status=dead |archive-url=https://web.archive.org/web/20110724102401/http://scienceray.com/physics/the-most-intense-cosmic-explosion-ever-seen/ |archive-date=2011-07-24 }}{{cite journal|doi=10.1126/science.1207150|pmid=21680812|bibcode=2011Sci...333..203B|title=A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star|journal=Science|volume=333|issue=6039|pages=203–6|last1=Bloom|first1=Joshua S.|last2=Giannios|first2=Dimitrios|last3=Metzger|first3=Brian D.|last4=Cenko|first4=S. Bradley|last5=Perley|first5=Daniel A.|last6=Butler|first6=Nathaniel R.|last7=Tanvir|first7=Nial R.|last8=Levan|first8=Andrew J.|last9=O'Brien|first9=Paul T.|last10=Strubbe|first10=Linda E.|last11=De Colle|first11=Fabio|last12=Ramirez-Ruiz|first12=Enrico|last13=Lee|first13=William H.|last14=Nayakshin|first14=Sergei|last15=Quataert|first15=Eliot|last16=King|first16=Andrew R.|last17=Cucchiara|first17=Antonino|last18=Guillochon|first18=James|last19=Bower|first19=Geoffrey C.|last20=Fruchter|first20=Andrew S.|last21=Morgan|first21=Adam N.|last22=Van Der Horst|first22=Alexander J.|year=2011|arxiv=1104.3257|s2cid=31819412 }} When this occurred, an astrophysical jet was launched with material traveling at relativistic speeds, near the speed of light. The beam of radiation from one of these jets pointed directly toward Earth,

enhancing the apparent brightness.

Swift J1644+57 was observed by many telescopes across the electromagnetic spectrum. γ- and X-rays were detected due to jet plasma physics from the relativistic jet, with repetitive dimming and softening of the X-rays due to precession within the warped disk.{{cite journal

|author1=Saxton, C. J. |author2=Soria, R. |author3=Wu, K. |author4=Kuin, N. P. M. |title=Long-term X-ray variability of Swift J1644+57|journal=Monthly Notices of the Royal Astronomical Society |volume=422 |issue=2 |pages=1625 |arxiv=1201.5210

|date=2012-01-25|bibcode=2012MNRAS.422.1625S |doi=10.1111/j.1365-2966.2012.20739.x |doi-access=free |s2cid=54882171 }} The jets drive shocks

into the surrounding interstellar medium,

resulting in a radio to infrared

afterglow. Observed linear polarization

of the infrared radiation

was consistent with synchrotron emission

from the afterglow shock.{{cite journal

|author1=Wiersema, K. |author2=van der Horst, A. J. |author3=Levan, A. J. |author4=Tanvir, N. R. |author5=Karjalainen, R. |author6=Kamble, A. |author7=Kouveliotou, C. |author8=Metzger, B. D. |author9=Russell, D. M. |author10=Skillen, I. |author11=Starling, R. L. C. |author12=Wijers, R. A. M. J.

|title=Polarimetry of the transient relativistic jet of GRB 110328 / Swift J164449.3+573451

|arxiv=1112.3042|date=2011-12-13

|doi=10.1111/j.1365-2966.2011.20379.x

|volume=421

|issue=3

|journal=Monthly Notices of the Royal Astronomical Society

|pages=1942–1948

|doi-access=free |bibcode=2012MNRAS.421.1942W|s2cid=53402046 }}

Continuous monitoring at radio and X-ray wavelengths indicated that after roughly 600 days (1.5 years), the relativistic jet shut off.{{cite journal |last1=Zauderer |first1=B. A. |last2=Berger |first2=E. |last3=Margutti |first3=R. |last4=Pooley |first4=G. G. |last5=Sari |first5=R. |last6=Soderberg |first6=A. M. |last7=Brunthaler |first7=A. |last8=Bietenholz |first8=M. F. |title=Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. Ii. The Relativistic Jet Shuts off and a Transition to Forward Shock X-Ray/Radio Emission |journal=The Astrophysical Journal |date=8 April 2013 |volume=767 |issue=2 |pages=152 |doi=10.1088/0004-637X/767/2/152 |arxiv=1212.1173 |bibcode=2013ApJ...767..152Z }} This time likely corresponds with when the mass accretion from the stellar debris passed under the Eddington rate, at which point the jet was no longer fueled.{{cite journal |last1=Zauderer |first1=B. A. |last2=Berger |first2=E. |last3=Margutti |first3=R. |last4=Pooley |first4=G. G. |last5=Sari |first5=R. |last6=Soderberg |first6=A. M. |last7=Brunthaler |first7=A. |last8=Bietenholz |first8=M. F. |title=Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. Ii. The Relativistic Jet Shuts off and a Transition to Forward Shock X-Ray/Radio Emission |journal=The Astrophysical Journal |date=8 April 2013 |volume=767 |issue=2 |pages=152 |doi=10.1088/0004-637X/767/2/152 |arxiv=1212.1173 |bibcode=2013ApJ...767..152Z }}

Since then, the outflow has become non-relativistic in speed,{{cite journal |last1=Eftekhari |first1=T. |last2=Berger |first2=E. |last3=Zauderer |first3=B. A. |last4=Margutti |first4=R. |last5=Alexander |first5=K. D. |title=Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. III. Late-time Jet Energetics and a Deviation from Equipartition |journal=The Astrophysical Journal |date=20 February 2018 |volume=854 |issue=2 |pages=86 |doi=10.3847/1538-4357/aaa8e0|doi-access=free |arxiv=1710.07289 |bibcode=2018ApJ...854...86E }} and emission is consistent with that of a shock wave that continues to expand into the surrounding material. As of 2021, the event is no longer detectable in X-rays but is still radio bright, and it is anticipated radio emission from Swift J1644+57 will be observable for several decades as emission continues to slowly fade.{{cite journal |last1=Cendes |first1=Y. |last2=Eftekhari |first2=T. |last3=Berger |first3=E. |last4=Polisensky |first4=E. |title=Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. IV. Continued Fading and Non-relativistic Expansion |journal=The Astrophysical Journal |date=1 February 2021 |volume=908 |issue=2 |pages=125 |doi=10.3847/1538-4357/abd323|doi-access=free |arxiv=2011.00074 |bibcode=2021ApJ...908..125C }}

Host galaxy and progenitor

Detection of the relativistically expanding afterglow confirmed the identity of the host galaxy.{{Cite journal

| volume = 476

| pages = 425–428

| author1 = Zauderer, B. A. |author2 = Berger, E. |author3 = Soderberg, A. M. |author3-link= Alicia M. Soderberg |author4 = Loeb, A. |author5 = Narayan, R. |author6 = Frail, D. A. |author7 = Petitpas, G. R. |author8 = Brunthaler, A. |author9 = Chornock, R. |author10 = Carpenter, J. M. |author11 = Pooley, G. G. |author12 = Mooley, K. |author13 = Kulkarni, S. R. |author14 = Margutti, R. |author15 = Fox, D. B. |author16 = Nakar, E. |author17 = Patel, N. A. |author18 = Volgenau, N. H. |author19 = Culverhouse, T. L. |author20 = Bietenholz, M. F. |author21 = Rupen, M. P. |author22 = Max-Moerbeck, W. |author23 = Readhead, A. C. S. |author24 = Richards, J. |author25 = Shepherd, M. |author26 = Storm, S. |author27 = Hull, C. L. H.

| title = Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451

| journal = Nature

| date = 2011

| doi = 10.1038/nature10366

| issue=7361

|arxiv = 1106.3568

| bibcode=2011Natur.476..425Z

| pmid=21866155| s2cid = 205226085

}} Optical emission lines imply that the host is not an active galactic nucleus (AGN), but a starburst galaxy of HII galaxy classification.{{cite journal |last1=Seifina |first1=Elena |last2=Titarchuk |first2=Lev |last3=Virgilli |first3=Enrico |title=Swift J164449.3+573451 and Swift J2058.4+0516: Black hole mass estimates for tidal disruption event sources |journal=Astronomy & Astrophysics |date=1 November 2017 |volume=607 |pages=A38 |doi=10.1051/0004-6361/201730869|arxiv=1707.05898 |bibcode=2017A&A...607A..38S }} The supermassive black hole at the center of the galaxy is estimated to be more than 7 million solar masses ({{solar mass}}).{{cite journal |last1=Seifina |first1=Elena |last2=Titarchuk |first2=Lev |last3=Virgilli |first3=Enrico |title=Swift J164449.3+573451 and Swift J2058.4+0516: Black hole mass estimates for tidal disruption event sources |journal=Astronomy & Astrophysics |date=1 November 2017 |volume=607 |pages=A38 |doi=10.1051/0004-6361/201730869|arxiv=1707.05898 |bibcode=2017A&A...607A..38S }}

Timing considerations suggest that the tidally disrupted star was possibly a white dwarf and not a regular main sequence star.{{cite journal|author1=Krolik J. |author2=Piran T. |title=Swift J1644+57: A White Dwarf Tidally Disrupted by a 10^4 M_{odot} Black Hole?|arxiv=1106.0923|date=2011-04-13|doi=10.1088/0004-637X/743/2/134|volume=743|issue=2|journal=The Astrophysical Journal|page=134|bibcode=2011ApJ...743..134K|s2cid=118446962 }} When the relativistic jet turned off, given the mass of {{What|date=November 2024|pre-text=}} astronomers calculated the amount of mass needed to fuel the jet for the Swift J1644+57 black hole as ~0.15 {{solar mass}}, which is consistent with a solar mass star.{{cite journal |last1=Zauderer |first1=B. A. |last2=Berger |first2=E. |last3=Margutti |first3=R. |last4=Pooley |first4=G. G. |last5=Sari |first5=R. |last6=Soderberg |first6=A. M. |last7=Brunthaler |first7=A. |last8=Bietenholz |first8=M. F. |title=Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. Ii. The Relativistic Jet Shuts off and a Transition to Forward Shock X-Ray/Radio Emission |journal=The Astrophysical Journal |date=8 April 2013 |volume=767 |issue=2 |pages=152 |doi=10.1088/0004-637X/767/2/152 |arxiv=1212.1173 |bibcode=2013ApJ...767..152Z }}

See also

References

{{Reflist}}

{{Sky|16|44|49.97|+|57|34|59.7|3800000000}}

{{Draco (constellation)|state=collapsed}}

{{2011 in space}}

{{DEFAULTSORT:GRB 110328A}}

20110328

Category:Draco (constellation)

110328A

Category:March 2011

Category:Tidal disruption events