Syndetic set
{{Short description|Type of subset of the natural numbers}}
In mathematics, a syndetic set is a subset of the natural numbers having the property of "bounded gaps": that the sizes of the gaps in the sequence of natural numbers is bounded.
Definition
See also
References
- {{cite journal
| last1=McLeod | first1=Jillian
| title=Some Notions of Size in Partial Semigroups
| journal=Topology Proceedings
| volume=25
| issue=Summer 2000
| date=2000
| pages=317–332
| url=http://topology.nipissingu.ca/tp/reprints/v25/tp25217.pdf}}
- {{cite book
| last1=Bergelson | first1=Vitaly | authorlink1=Vitaly Bergelson
| chapter=Minimal Idempotents and Ergodic Ramsey Theory
| title=Topics in Dynamics and Ergodic Theory
| pages=8–39
| series=London Mathematical Society Lecture Note Series
| volume=310
| publisher=Cambridge University Press, Cambridge
| date=2003
| doi=10.1017/CBO9780511546716.004
| isbn=978-0-521-53365-2 | chapter-url=http://www.math.ohio-state.edu/~vitaly/vbkatsiveli20march03.pdf}}
- {{cite journal |last1=Bergelson |first1=Vitaly |authorlink1=Vitaly Bergelson |last2=Hindman |first2=Neil |author-link2=Neil Hindman |title=Partition regular structures contained in large sets are abundant |journal=Journal of Combinatorial Theory |series=Series A |volume=93 |issue=1 |date=2001 |pages=18–36 |doi=10.1006/jcta.2000.3061 |doi-access=free}}