Synthetic biopolymer

{{Short description|Biopolymers obtained by abiotic chemical routes}}

{{Quote box

| width = 30%

|title =IUPAC definitions

|quote = Synthetic biopolymers: human-made copies of biopolymers obtained by abiotic chemical routes.

Artificial polymer: human-made polymer that is not a biopolymer

|align = right

}}

Synthetic biopolymers are human-made copies of biopolymers obtained by abiotic chemical routes.{{cite journal|last1=Vert|first1=Michel|last2=Doi|first2=Yoshiharu|last3=Hellwich|first3=Karl-Heinz|last4=Hess|first4=Michael|last5=Hodge|first5=Philip|last6=Kubisa|first6=Przemyslaw|last7=Rinaudo|first7=Marguerite|last8=Schué|first8=François|date=11 January 2012|title=Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)|journal=Pure and Applied Chemistry|volume=84|issue=2|pages=377–410|doi=10.1351/PAC-REC-10-12-04|s2cid=98107080|doi-access=free}} Synthetic biopolymer of different chemical nature have been obtained, including polysaccharides,{{Cite journal|last=Kadokawa|first=Jun-ichi|date=2011-07-13|title=Precision Polysaccharide Synthesis Catalyzed by Enzymes|journal=Chemical Reviews|volume=111|issue=7|pages=4308–4345|doi=10.1021/cr100285v|pmid=21319765|issn=0009-2665}} glycoproteins,{{Cite journal|last1=Hanson|first1=Sarah|last2=Best|first2=Michael|last3=Bryan|first3=Marian C.|last4=Wong|first4=Chi-Huey|date=2004-12-01|title=Chemoenzymatic synthesis of oligosaccharides and glycoproteins|journal=Trends in Biochemical Sciences|volume=29|issue=12|pages=656–663|doi=10.1016/j.tibs.2004.10.004|pmid=15544952|issn=0968-0004}} peptides and proteins,{{cite journal |last1=Nilsson |first1=Bradley L. |last2=Soellner |first2=Matthew B. |last3=Raines |first3=Ronald T. |title=Chemical Synthesis of Proteins |journal=Annual Review of Biophysics and Biomolecular Structure |date=3 May 2005 |volume=34 |issue=1 |pages=91–118 |doi=10.1146/annurev.biophys.34.040204.144700 |pmid=15869385 |pmc=2845543 |issn=1056-8700}}{{cite journal |last1=Kent |first1=Stephen B. H. |title=Total chemical synthesis of proteins |journal=Chemical Society Reviews |date=26 January 2009 |volume=38 |issue=2 |pages=338–351 |doi=10.1039/B700141J |pmid=19169452 |language=en |issn=1460-4744}} polyhydroxoalkanoates,{{Cite journal|last1=Gross|first1=Richard A.|last2=Ganesh|first2=Manoj|last3=Lu|first3=Wenhua|date=2010-08-01|title=Enzyme-catalysis breathes new life into polyester condensation polymerizations|journal=Trends in Biotechnology|volume=28|issue=8|pages=435–443|doi=10.1016/j.tibtech.2010.05.004|pmid=20598389|issn=0167-7799}} polyisoprenes.{{cite journal |last1=Natta |first1=G. |title=Crystalline Synthetic High Polymers with a Sterically Regular Structure |journal=Stereoregular Polymers and Stereospecific Polymerizations |date=1 January 1967 |pages=701–707 |doi=10.1016/B978-1-4831-9882-8.50055-5 |publisher=Pergamon|isbn=9781483198828 }}

Synthesis of biopolymer

The high molecular weight of biopolymers make their synthesis inherently laborious. Further challenges can arise from specific spatial arrangement adopted by the natural biopolymer, which may be vital for its properties/activity but not easily reproducible in the synthetic copy. Despite this, chemical approaches to obtain biopolymer are highly desirable to overcome issues arising from low abundance of the target biopolymer in Nature, the need for cumbersome isolation processes or high batch-to-batch variability or inhomogeneity of the naturally-sourced species.{{Citation|last=Kubicek|first=Christian P.|chapter=Synthetic Biopolymers|date=2016|pages=307–335|editor-last=Glieder|editor-first=Anton|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-319-22708-5_9|isbn=9783319227085|editor2-last=Kubicek|editor2-first=Christian P.|editor3-last=Mattanovich|editor3-first=Diethard|editor4-last=Wiltschi|editor4-first=Birgit|title=Synthetic Biology|doi-access=free}}

= Examples of synthetic biopolymers obtained by chemical routes =

  • cis-1,4-polyisoprene{{Citation|last1=Rudin|first1=Alfred|title=Chapter 11 - Ionic and Coordinated Polymerizations|date=2013-01-01|doi=10.1016/B978-0-12-382178-2.00011-0|work=The Elements of Polymer Science & Engineering (Third Edition)|pages=449–493|editor-last=Rudin|editor-first=Alfred|publisher=Academic Press|isbn=9780123821782|last2=Choi|first2=Phillip|editor2-last=Choi|editor2-first=Phillip}} (synthetic analogue of rubber) and trans-1,4-polyisoprene{{Cite journal|last1=Song|first1=Jing-She|last2=Huang|first2=Bao-Chen|last3=Yu|first3=Ding-Sheng|date=2001|title=Progress of synthesis and application of trans-1,4-polyisoprene|journal=Journal of Applied Polymer Science|language=en|volume=82|issue=1|pages=81–89|doi=10.1002/app.1826|issn=1097-4628}} (synthetic analogue of gutta percha) are obtained by coordination polymerisation using suitable Ziegler-Natta catalysts.
  • Polyhydroxoalkanoates such as poly(3-hydroxobutyrate), poly(hydroxovaleric acid) etc. obtained by polycondensation and polyaddition. Low-molecular weight polylactide and other polyglycolides can also be obtained by chemical synthesis.{{Cite book|title=Poly(lactic acid) : synthesis, structures, properties, processing and applications.|date=2013|publisher=Wiley|isbn=9781118088135|location=Hoboken, N.J.|oclc=898985627}}
  • Oligonucleotides and polynucleotides (DNA or RNA) can be obtain by chemical synthesis through a variety of established approaches.{{Cite journal|last=Reese|first=Colin B.|date=2005-10-20|title=Oligo- and poly-nucleotides: 50 years of chemical synthesis|journal=Organic & Biomolecular Chemistry|language=en|volume=3|issue=21|pages=3851–3868|doi=10.1039/B510458K|pmid=16312051|issn=1477-0539}}
  • A variety of proteins have been obtained by chemical synthesis. A successful approach relies on native chemical ligation, which achieves the synthesis of proteins by linking shorter unprotected peptides. This strategy allowed to obtain, amongst many others, proteins such as insulin-like growth factor 1,{{Cite journal|last1=Sohma|first1=Youhei|last2=Pentelute|first2=Brad L.|last3=Whittaker|first3=Jonathan|last4=Hua|first4=Qin-xin|last5=Whittaker|first5=Linda J.|last6=Weiss|first6=Michael A.|last7=Kent|first7=Stephen B. H.|date=2008|title=Comparative Properties of Insulin-like Growth Factor 1 (IGF-1) and [Gly7D-Ala]IGF-1 Prepared by Total Chemical Synthesis|journal=Angewandte Chemie International Edition|volume=47|issue=6|pages=1102–1106|doi=10.1002/anie.200703521|pmid=18161716|issn=1521-3773}} the precursor of Aequorea green fluorescent protein{{Cite journal|last1=Sakakibara|first1=Shumpei|last2=Tsuji|first2=Frederick I.|last3=Kimura|first3=Terutoshi|last4=Bódi|first4=József|last5=Nishio|first5=Hideki|last6=Inui|first6=Tatsuya|last7=Nishiuchi|first7=Yuji|date=1998-11-10|title=Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence|journal=Proceedings of the National Academy of Sciences|language=en|volume=95|issue=23|pages=13549–13554|doi=10.1073/pnas.95.23.13549|doi-access=free |issn=0027-8424|pmid=9811837|pmc=24856|bibcode=1998PNAS...9513549N}} and the influenza A virus M2 membrane protein.{{Cite journal|last1=Kochendoerfer|first1=Gerd G.|last2=Salom|first2=David|last3=Lear|first3=James D.|last4=Wilk-Orescan|first4=Rosemarie|last5=Kent|first5=Stephen B. H.|last6=DeGrado|first6=William F.|date=1999-09-01|title=Total Chemical Synthesis of the Integral Membrane Protein Influenza A Virus M2: Role of Its C-Terminal Domain in Tetramer Assembly|journal=Biochemistry|volume=38|issue=37|pages=11905–11913|doi=10.1021/bi990720m|pmid=10508393|issn=0006-2960}}

= Examples of biopolymers obtained by chemoenzymatic routes =

  • Polyhydroxoalkanoates and polyesters obtained by enzyme-assisted esterification using lipases.
  • Heparin,{{cite journal |last1=Linhardt |first1=Robert J |last2=Liu |first2=Jian |title=Synthetic heparin |journal=Current Opinion in Pharmacology |date=April 2012 |volume=12 |issue=2 |pages=217–219 |doi=10.1016/j.coph.2011.12.002|pmid=22325855 |pmc=3496756 }} heparan sulfate{{cite journal |last1=Peterson |first1=Sherket |last2=Frick |first2=Amber |last3=Liu |first3=Jian |title=Design of biologically active heparan sulfate and heparin using an enzyme-based approach |journal=Natural Product Reports |date=2009 |volume=26 |issue=5 |pages=610–27 |doi=10.1039/B803795G|pmid=19387498 }} and other glycosaminoglycans{{cite journal |last1=Mende |first1=Marco |last2=Bednarek |first2=Christin |last3=Wawryszyn |first3=Mirella |last4=Sauter |first4=Paul |last5=Biskup |first5=Moritz B. |last6=Schepers |first6=Ute |last7=Bräse |first7=Stefan |title=Chemical Synthesis of Glycosaminoglycans |journal=Chemical Reviews |date=13 July 2016 |volume=116 |issue=14 |pages=8193–8255 |doi=10.1021/acs.chemrev.6b00010|pmid=27410264 }} and plant glycans.{{cite journal |last1=Pfrengle |first1=Fabian |title=Synthetic plant glycans |journal=Current Opinion in Chemical Biology |date=October 2017 |volume=40 |pages=145–151 |doi=10.1016/j.cbpa.2017.09.010|pmid=29024888 }}
  • Polysaccharides such as cellulose, amylose, chitin and derivatives
  • Natural and non-natural polynucleotides can be successfully obtained by enzyme-assisted synthesis using ligase- or polymerase-based approaches and template-assisted polymerisation.{{Cite journal|last1=Kong|first1=Dehui|last2=Yeung|first2=Wayland|last3=Hili|first3=Ryan|date=2016-07-11|title=Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates|journal=ACS Combinatorial Science|volume=18|issue=7|pages=355–370|doi=10.1021/acscombsci.6b00059|pmid=27275512|issn=2156-8952}}

Human-made biopolymers obtained through approaches that involve genetic engineering or recombinant DNA technology are different from synthetic biopolymers and should be referred to as artificial biopolymer (e.g., artificial protein, artificial polynucleotide, etc.).

Applications of synthetic biopolymers

As their natural analogues, synthetic biopolymers find applications in numerous fields, including materials for commodities, drug delivery, tissue engineering, therapeutic and diagnostic applications.{{citation needed|date=July 2019}}

References