Szegő polynomial

{{inline |date=May 2024}}

In mathematics, a Szegő polynomial is one of a family of orthogonal polynomials for the Hermitian inner product

:\langle f|g\rangle = \int_{-\pi}^{\pi}f(e^{i\theta})\overline{g(e^{i\theta})}\,d\mu

where dμ is a given positive measure on [−π, π]. Writing \phi_n(z) for the polynomials, they obey a recurrence relation

:\phi_{n+1}(z)=z\phi_n(z) + \rho_{n+1}\phi_n^*(z)

where \rho_{n+1} is a parameter, called the reflection coefficient or the Szegő parameter.

See also

References

  • {{springer|title=Szegö polynomial|id=s/s130650|first=A.|last= Bultheel|authorlink= Adhemar Bultheel}}
  • G. Szegő, "Orthogonal polynomials", Colloq. Publ., 33, Amer. Math. Soc. (1967)

Category:Orthogonal polynomials

{{polynomial-stub}}