Szemerédi's theorem
{{short description|Long dense subsets of the integers contain arbitrarily large arithmetic progressions}}
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured{{cite journal|author-link1=Paul Erdős|first1=Paul|last1=Erdős|author-link2=Pál Turán|first2=Paul|last2=Turán|title=On some sequences of integers|journal=Journal of the London Mathematical Society|volume=11|issue=4|year=1936|pages=261–264|url=http://www.renyi.hu/~p_erdos/1936-05.pdf|doi=10.1112/jlms/s1-11.4.261|mr=1574918}} that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.
Statement
A subset A of the natural numbers is said to have positive upper density if
:
Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains an arithmetic progression of length k for all positive integers k.
An often-used equivalent finitary version of the theorem states that for every positive integer k and real number , there exists a positive integer
:
such that every subset of {1, 2, ..., N} of size at least contains an arithmetic progression of length k.
Another formulation uses the function rk(N), the size of the largest subset of {1, 2, ..., N} without an arithmetic progression of length k. Szemerédi's theorem is equivalent to the asymptotic bound
:
That is, rk(N) grows less than linearly with N.
History
Van der Waerden's theorem, a precursor of Szemerédi's theorem, was proved in 1927.
The cases k = 1 and k = 2 of Szemerédi's theorem are trivial. The case k = 3, known as Roth's theorem, was established in 1953 by Klaus Roth{{cite journal|author-link=Klaus Friedrich Roth|first=Klaus Friedrich|last=Roth|title=On certain sets of integers|journal=Journal of the London Mathematical Society|volume=28|pages=104–109|year=1953|zbl=0050.04002|mr=0051853|doi=10.1112/jlms/s1-28.1.104|issue=1}} via an adaptation of the Hardy–Littlewood circle method. Szemerédi{{cite journal|author-link=Endre Szemerédi|first=Endre|last=Szemerédi|title=On sets of integers containing no four elements in arithmetic progression|journal=Acta Mathematica Academiae Scientiarum Hungaricae|volume=20|pages=89–104|year=1969|issue=1–2|zbl=0175.04301|mr=0245555|doi=10.1007/BF01894569|doi-access=free}} next proved the case k = 4 through combinatorics. Using an approach similar to the one he used for the case k = 3, Roth{{cite journal|author-link=Klaus Friedrich Roth|first=Klaus Friedrich|last=Roth|title=Irregularities of sequences relative to arithmetic progressions, IV|journal=Periodica Math. Hungar.|volume=2|pages=301–326|year=1972|issue=1–4|mr=0369311|doi=10.1007/BF02018670|s2cid=126176571}} gave a second proof for k = 4 in 1972.
The general case was settled in 1975, also by Szemerédi,{{cite journal|author-link=Endre Szemerédi|first=Endre|last=Szemerédi|title=On sets of integers containing no k elements in arithmetic progression|journal=Acta Arithmetica|volume=27|pages=199–245|year=1975|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27132.pdf|zbl=0303.10056|mr=0369312|doi=10.4064/aa-27-1-199-245|doi-access=free}} who developed an ingenious and complicated extension of his previous combinatorial argument for k = 4 (called "a masterpiece of combinatorial reasoning" by Erdős{{cite encyclopedia|last=Erdős|first=Paul|chapter=Some of My Favorite Problems and Results|pages=51–70|year=2013|encyclopedia=The Mathematics of Paul Erdős I|doi=10.1007/978-1-4614-7258-2_3|mr=1425174|editor1-last=Graham|editor1-first=Ronald L.|editor2-last=Nešetřil|editor2-first=Jaroslav|editor3-last=Butler|editor3-first=Steve|edition=Second|isbn=978-1-4614-7257-5|publisher=Springer|location=New York}}). Several other proofs are now known, the most important being those by Hillel Furstenberg{{cite journal|author-link=Hillel Furstenberg|first=Hillel|last=Furstenberg|title=Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions|journal=Journal d'Analyse Mathématique|volume=31|pages=204–256|year=1977|mr=0498471|doi=10.1007/BF02813304|doi-access=free|s2cid=120917478}}.{{cite journal | last1=Furstenberg | first1=Hillel | last2=Katznelson | first2=Yitzhak | last3=Ornstein | first3=Donald Samuel | title=The ergodic theoretical proof of Szemerédi's theorem | journal=Bull. Amer. Math. Soc. | year=1982 | volume=7 | issue=3 | pages=527–552 | mr=0670131 | doi=10.1090/S0273-0979-1982-15052-2| doi-access=free }} in 1977, using ergodic theory, and by Timothy Gowers{{cite journal|author-link=Timothy Gowers|first=Timothy|last=Gowers|title=A new proof of Szemerédi's theorem|journal=Geom. Funct. Anal.|volume=11|issue=3|pages=465–588|url=http://www.dpmms.cam.ac.uk/~wtg10/sz898.dvi|year=2001|mr=1844079|doi=10.1007/s00039-001-0332-9|s2cid=124324198}} in 2001, using both Fourier analysis and combinatorics while also introducing what is now called the Gowers norm. Terence Tao has called the various proofs of Szemerédi's theorem a "Rosetta stone" for connecting disparate fields of mathematics.{{cite encyclopedia | last=Tao | first=Terence | title=Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 | chapter=The dichotomy between structure and randomness, arithmetic progressions, and the primes | arxiv=math/0512114 | encyclopedia=International Congress of Mathematicians | volume=1 | publisher=European Mathematical Society | location=Zürich | year=2007 | pages=581–608 | mr=2334204 | doi=10.4171/022-1/22 | isbn=978-3-03719-022-7 | editor1-first=Marta | editor1-last=Sanz-Solé | editor2-first=Javier | editor2-last=Soria | editor3-first=Juan Luis | editor3-last=Varona | editor4-first=Joan | editor4-last=Verdera }}
Quantitative bounds
{{See also|Erdős conjecture on arithmetic progressions#Progress and related results|Roth's theorem on arithmetic progressions#Improving bounds|Salem–Spencer set#Size}}
It is an open problem to determine the exact growth rate of rk(N). The best known general bounds are
:
where . The lower bound is due to O'Bryant{{cite journal | last=O'Bryant | first=Kevin | title=Sets of integers that do not contain long arithmetic progressions | journal=Electronic Journal of Combinatorics | year=2011 | volume=18 | issue=1 | doi=10.37236/546 | url=http://www.combinatorics.org/ojs/index.php/eljc/article/download/v18i1p59/pdf | mr=2788676| doi-access=free | arxiv=0811.3057 }} building on the work of Behrend,{{cite journal|author-link=Felix Behrend|first=Felix A.|last=Behrend|title=On the sets of integers which contain no three terms in arithmetic progression|journal=Proceedings of the National Academy of Sciences|volume=32|issue=12|pages=331–332|year=1946|zbl=0060.10302|doi=10.1073/pnas.32.12.331|doi-access=free|mr=0018694|pmc=1078964|pmid=16578230|bibcode=1946PNAS...32..331B}} Rankin,{{cite journal|author-link=Robert A. Rankin|first=Robert A.|last=Rankin|title=Sets of integers containing not more than a given number of terms in arithmetical progression|journal=Proc. R. Soc. Edinburgh Sect. A|volume=65|pages=332–344|year=1962|zbl=0104.03705|mr=0142526}} and Elkin.{{cite journal | last=Elkin | first=Michael | title=An improved construction of progression-free sets | journal=Israel Journal of Mathematics | year=2011 | volume=184 | pages=93–128 | doi=10.1007/s11856-011-0061-1 | doi-access=free | mr=2823971 | issue=1| arxiv=0801.4310 }}{{cite encyclopedia | last1=Green | first1=Ben | last2=Wolf | first2=Julia| title=Additive Number Theory |author2-link= Julia Wolf | chapter=A note on Elkin's improvement of Behrend's construction | publisher=Springer | location=New York | mr=2744752 | year=2010 | pages=141–144 | encyclopedia=Additive number theory. Festschrift in honor of the sixtieth birthday of Melvyn B. Nathanson | editor1-last=Chudnovsky | editor1-first=David | editor2-last=Chudnovsky | editor2-first=Gregory | isbn=978-0-387-37029-3 | doi=10.1007/978-0-387-68361-4_9| arxiv=0810.0732 | s2cid=10475217 }} The upper bound is due to Gowers.
For small k, there are tighter bounds than the general case. When k = 3, Bourgain,{{cite journal|author-link=Jean Bourgain|first=Jean|last=Bourgain|title=On triples in arithmetic progression|journal=Geom. Funct. Anal.|volume=9|issue=5|year=1999|pages=968–984|mr=1726234|doi=10.1007/s000390050105|s2cid=392820}}{{cite journal|author-link=Jean Bourgain|first=Jean|last=Bourgain|title=Roth's theorem on progressions revisited|volume=104|year=2008|pages=155–192|journal=Journal d'Analyse Mathématique|mr=2403433|doi=10.1007/s11854-008-0020-x|doi-access=free|issue=1|s2cid=16985451}} Heath-Brown,{{cite journal|author-link=D. R. Heath-Brown|first=Roger|last=Heath-Brown|title=Integer sets containing no arithmetic progressions|volume=35|journal=Journal of the London Mathematical Society|issue=3|year=1987|mr=889362|pages=385–394|doi=10.1112/jlms/s2-35.3.385}} Szemerédi,{{cite journal|first=Endre|last=Szemerédi|title=Integer sets containing no arithmetic progressions|journal=Acta Mathematica Hungarica|year=1990|volume=56|issue=1–2|doi=10.1007/BF01903717|doi-access=free|mr=1100788|pages=155–158}} Sanders,{{cite journal|author-link=Tom Sanders (mathematician)|first=Tom|last=Sanders|title=On Roth's theorem on progressions|journal=Annals of Mathematics|volume=174|issue=1|year=2011|pages=619–636|mr=2811612|doi=10.4007/annals.2011.174.1.20|arxiv=1011.0104|s2cid=53331882}} and Bloom{{cite journal | last=Bloom | first=Thomas F. | title=A quantitative improvement for Roth's theorem on arithmetic progressions | arxiv=1405.5800 | year=2016 | issue=3 | volume=93 | pages=643–663 | journal=Journal of the London Mathematical Society |series=Second Series | mr=3509957 | doi=10.1112/jlms/jdw010| s2cid=27536138 }} established progressively smaller upper bounds, and Bloom and Sisask then proved the first bound that broke the so-called "logarithmic barrier".{{cite arXiv |last1=Bloom |first1=Thomas F. |last2=Sisask |first2=Olof |title=Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions |year=2020 |class=math.NT |eprint=2007.03528v2 }} The current best bounds are
:, for some constant ,
respectively due to O'Bryant, and Bloom and Sisask{{cite arXiv |last1=Bloom |first1=Thomas F. |last2=Sisask |first2=Olof |title=An improvement to the Kelley-Meka bounds on three-term arithmetic progressions |year=2023 |class=math.NT |eprint=2309.02353v1 }} (the latter built upon the breakthrough result of Kelley and Meka,{{cite arXiv |last1=Kelley |first1=Zander |last2=Meka |first2=Raghu |title=Strong Bounds for 3-Progressions |year=2023 |class=math.NT |eprint=2302.05537v5 }} who obtained the same upper bound, with "1/9" replaced by "1/12").
For k = 4, Green and Tao{{cite encyclopedia|last1=Green|first1=Ben|last2=Tao|first2=Terence|title=New bounds for Szemeredi's theorem, II: A new bound for r_4(N)|chapter=New bounds for Szemeredi's theorem. II. A new bound for r4(N)|arxiv=math/0610604|year=2009|pages=180–204|publisher=Cambridge University Press|location=Cambridge|mr=2508645|encyclopedia=Analytic number theory. Essays in honour of Klaus Roth on the occasion of his 80th birthday|isbn=978-0-521-51538-2|editor1-last=Chen|editor1-first=William W. L.|editor2-last=Gowers|editor2-first=Timothy|editor2-link=Timothy Gowers|editor3-last=Halberstam|editor3-first=Heini|editor3-link=Heini Halberstam|editor4-last=Schmidt|editor4-link=Wolfgang M. Schmidt|editor4-first=Wolfgang|editor5-last=Vaughan|editor5-first=Robert Charles|editor5-link=Bob Vaughan|zbl=1158.11007|bibcode=2006math.....10604G}}{{cite journal| title=New bounds for Szemerédi's theorem, III: A polylogarithmic bound for r4(N) | year=2017 | last1=Green | first1=Ben | last2=Tao|first2=Terence|arxiv=1705.01703|mr=3731312|journal=Mathematika|volume=63|issue=3|pages=944–1040|doi=10.1112/S0025579317000316| s2cid=119145424 }} proved that
:
For k=5 in 2023 and k≥5 in 2024 Leng, Sah and Sawhney proved in preprints {{Cite arXiv |eprint=2402.17995 |first1=James |last1=Leng |first2=Ashwin |last2=Sah |title=Improved Bounds for Szemerédi's Theorem |date=2024 |last3=Sawhney |first3=Mehtaab|class=math.CO }}{{Cite arXiv |eprint=2312.10776 |first1=James |last1=Leng |first2=Ashwin |last2=Sah |title=Improved bounds for five-term arithmetic progressions |date=2023 |last3=Sawhney |first3=Mehtaab|class=math.NT }}{{Cite web |last=Sloman |first=Leila |date=2024-08-05 |title=Grad Students Find Inevitable Patterns in Big Sets of Numbers |url=https://www.quantamagazine.org/grad-students-find-inevitable-patterns-in-big-sets-of-numbers-20240805/ |access-date=2024-08-07 |website=Quanta Magazine |language=en}} that:
:
Extensions and generalizations
A multidimensional generalization of Szemerédi's theorem was first proven by Hillel Furstenberg and Yitzhak Katznelson using ergodic theory.{{cite journal | last1=Furstenberg | first1=Hillel | author1-link=Hillel Furstenberg | last2=Katznelson | first2=Yitzhak | author2-link=Yitzhak Katznelson | title=An ergodic Szemerédi theorem for commuting transformations | journal=Journal d'Analyse Mathématique | doi=10.1007/BF02790016 | doi-access=free | mr=531279 | volume=38 | year=1978 | pages=275–291 | issue=1| s2cid=123386017 }} Timothy Gowers,{{cite journal | last=Gowers | first=Timothy | author-link=Timothy Gowers | title=Hypergraph regularity and the multidimensional Szemerédi theorem | journal=Annals of Mathematics | volume=166 | year=2007 | issue=3 | pages=897–946 | doi=10.4007/annals.2007.166.897 | mr=2373376| arxiv=0710.3032 | s2cid=56118006 }} Vojtěch Rödl and Jozef Skokan{{cite journal | last1=Rödl | first1=Vojtěch | author1-link=Vojtěch Rödl | last2=Skokan | first2=Jozef | title=Regularity lemma for k-uniform hypergraphs | journal= Random Structures Algorithms | volume=25 | year=2004 | issue=1 | pages=1–42 | mr=2069663 | doi=10.1002/rsa.20017| s2cid=7458739 }}{{cite journal | last1=Rödl | first1=Vojtěch | author1-link=Vojtěch Rödl | last2=Skokan | first2=Jozef | title=Applications of the regularity lemma for uniform hypergraphs | journal=Random Structures Algorithms | volume=28 | year=2006 | issue=2 | pages=180–194 | mr=2198496 | doi=10.1002/rsa.20108| s2cid=18203198 | url=http://www.math.emory.edu/technical-reports/techrep-00076.pdf }} with Brendan Nagle, Rödl, and Mathias Schacht,{{cite journal | last1=Nagle | first1=Brendan | last2=Rödl | first2=Vojtěch | author2-link=Vojtěch Rödl | last3=Schacht | first3=Mathias|author3-link=Mathias Schacht | title=The counting lemma for regular k-uniform hypergraphs | journal=Random Structures Algorithms | volume=28 | year=2006 | issue=2 | pages=113–179 | doi=10.1002/rsa.20117 | mr=2198495| s2cid=14126774 }} and Terence Tao{{cite journal | last=Tao | first=Terence | authorlink=Terence Tao | title=A variant of the hypergraph removal lemma | journal=Journal of Combinatorial Theory | series=Series A | volume=113 | year=2006 | issue=7 | pages=1257–1280 | doi=10.1016/j.jcta.2005.11.006 | doi-access=free | mr=2259060| arxiv=math/0503572 }} provided combinatorial proofs.
Alexander Leibman and Vitaly Bergelson{{cite journal | first1=Vitaly | last1=Bergelson | author1-link=Vitaly Bergelson | first2=Alexander | last2=Leibman | title=Polynomial extensions of van der Waerden's and Szemerédi's theorems | journal=Journal of the American Mathematical Society | volume=9 | issue=3 | year=1996 | pages=725–753 | mr=1325795 | doi=10.1090/S0894-0347-96-00194-4| doi-access=free }} generalized Szemerédi's to polynomial progressions: If is a set with positive upper density and are integer-valued polynomials such that , then there are infinitely many such that for all . Leibman and Bergelson's result also holds in a multidimensional setting.
The finitary version of Szemerédi's theorem can be generalized to finite additive groups including vector spaces over finite fields.{{cite journal | last1=Furstenberg | first1=Hillel | last2=Katznelson | author1-link=Hillel Furstenberg | first2=Yitzhak | author2-link=Yitzhak Katznelson | title=A density version of the Hales–Jewett theorem | journal=Journal d'Analyse Mathématique | volume=57 | year=1991 | pages=64–119 | mr=1191743 | issue=1 | doi=10.1007/BF03041066 | doi-access=free | s2cid=123036744 }} The finite field analog can be used as a model for understanding the theorem in the natural numbers.{{cite journal | first=Julia | last=Wolf | title=Finite field models in arithmetic combinatorics—ten years on | year=2015 | volume=32 | pages=233–274 | journal=Finite Fields and Their Applications | doi=10.1016/j.ffa.2014.11.003 | mr=3293412| doi-access=free | hdl=1983/d340f853-0584-49c8-a463-ea16ee51ce0f | hdl-access=free }} The problem of obtaining bounds in the k=3 case of Szemerédi's theorem in the vector space is known as the cap set problem.
The Green–Tao theorem asserts the prime numbers contain arbitrarily long arithmetic progressions. It is not implied by Szemerédi's theorem because the primes have density 0 in the natural numbers. As part of their proof, Ben Green and Tao introduced a "relative" Szemerédi theorem which applies to subsets of the integers (even those with 0 density) satisfying certain pseudorandomness conditions. A more general relative Szemerédi theorem has since been given by David Conlon, Jacob Fox, and Yufei Zhao.{{cite journal | first1=David | last1=Conlon | author1-link=David Conlon | first2=Jacob | last2=Fox | author2-link=Jacob Fox | first3=Yufei | last3=Zhao | title=A relative Szemerédi theorem | arxiv=1305.5440 | year=2015 | mr=3361771 | volume=25 | issue=3 | pages=733–762 | doi=10.1007/s00039-015-0324-9 | doi-access=free | journal=Geometric and Functional Analysis| s2cid=14398869 }}{{cite journal | first=Yufei | last=Zhao | title=An arithmetic transference proof of a relative Szemerédi theorem | journal=Mathematical Proceedings of the Cambridge Philosophical Society | volume=156 | year=2014 | pages=255–261 | issue=2 | mr=3177868 | doi=10.1017/S0305004113000662| arxiv=1307.4959 | bibcode=2014MPCPS.156..255Z | s2cid=119673319 }}
The Erdős conjecture on arithmetic progressions would imply both Szemerédi's theorem and the Green–Tao theorem.
See also
{{div col|colwidth=20em}}
- Problems involving arithmetic progressions
- Ergodic Ramsey theory
- Arithmetic combinatorics
- Szemerédi regularity lemma
- Van der Waerden's theorem
- {{slink|Hypergraph removal lemma#Proof of Szemerédi's theorem}}
{{div col end}}
Notes
{{reflist|colwidth=30em}}
Further reading
- {{cite encyclopedia | first=Terence | last=Tao | author-link=Terence Tao | chapter=The ergodic and combinatorial approaches to Szemerédi's theorem | pages=145–193 | editor1-first=Andrew | editor1-last=Granville | editor2-first=Melvyn B. | editor2-last=Nathanson| editor3-first=József | editor3-last=Solymosi | encyclopedia=Additive Combinatorics | series=CRM Proceedings & Lecture Notes | volume=43 | publisher=American Mathematical Society | year=2007 | isbn=978-0-8218-4351-2 | zbl=1159.11005 | mr=2359471 | arxiv=math/0604456 | location=Providence, RI| bibcode=2006math......4456T }}
External links
{{div col|colwidth=20em}}
- [http://planetmath.org/encyclopedia/SzemeredisTheorem.html PlanetMath source for initial version of this page] {{Webarchive|url=https://web.archive.org/web/20120716181648/http://planetmath.org/encyclopedia/SzemeredisTheorem.html |date=2012-07-16 }}
- [https://www.math.ucla.edu/~tao/whatsnew.html Announcement by Ben Green and Terence Tao] – the preprint is available at [http://arxiv.org/abs/math/0404188 math.NT/0404188]
- [http://in-theory.blogspot.com/2006/06/szemeredis-theorem.html Discussion of Szemerédi's theorem (part 1 of 5)]
- Ben Green and Terence Tao: [http://www.scholarpedia.org/article/Szemeredi%27s_Theorem Szemerédi's theorem] on Scholarpedia
- {{MathWorld|SzemeredisTheorem|SzemeredisTheorem}}
- {{cite web|last=Grime|first=James|title=6,000,000: Endre Szemerédi wins the Abel Prize|url=http://www.numberphile.com/videos/abel_prize.html|work=Numberphile|year=2012|publisher=Brady Haran|author2=Hodge, David|access-date=2013-04-02|archive-date=2014-01-09|archive-url=https://web.archive.org/web/20140109114940/http://numberphile.com/videos/abel_prize.html|url-status=dead}}
{{div col end}}
{{DEFAULTSORT:Szemeredi's theorem}}
Category:Additive combinatorics