Tabernanthine

{{Short description|Chemical compound}}

{{Drugbox

| IUPAC_name = (1R,15R,17S,18S)-17-ethyl-6-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4(9),5,7-tetraene

| image = Tabernanthine.svg

| image_class = skin-invert-image

| alt = Skeletal formula of tabernanthine

| width = 240

| image2 = Tabernanthine molecule ball.png

| alt2 = Ball-and-stick model of the tabernanthine molecule

| tradename =

| pregnancy_category =

| legal_status =

| routes_of_administration =

| bioavailability =

| protein_bound =

| metabolism =

| elimination_half-life =

| excretion =

| CAS_number = 83-94-3

| ATC_prefix = none

| ATC_suffix =

| PubChem = 6326116

| ChemSpiderID = 4885254

| UNII = TV52I1S16D

| C=20 | H=26 | N=2 | O=1

| smiles = CCC1CC2CC3C1N(C2)CCC4=C3NC5=C4C=CC(=C5)OC

| StdInChI = 1S/C20H26N2O/c1-3-13-8-12-9-17-19-16(6-7-22(11-12)20(13)17)15-5-4-14(23-2)10-18(15)21-19/h4-5,10,12-13,17,20-21H,3,6-9,11H2,1-2H3/t12-,13+,17+,20+/m1/s1

| StdInChIKey = UCIDWKVIQZIKEK-CFDPKNGZSA-N

}}

Tabernanthine is an alkaloid found in Tabernanthe iboga.{{cite journal | title = The Alkaloids of Tabernanthe iboga. Part IV.1 The Structures of Ibogamine, Ibogaine, Tabernanthine and Voacangine | journal = Journal of the American Chemical Society| volume = 80| pages = 126–136| doi = 10.1021/ja01534a036 |year = 1958| vauthors = Bartlett MF, Dickel DF, Taylor WI | issue = 1| bibcode = 1958JAChS..80..126B}}

It has been used in laboratory experiments to study how addiction affects the brain.{{cite journal | vauthors = Levi MS, Borne RF | title = A review of chemical agents in the pharmacotherapy of addiction | journal = Current Medicinal Chemistry | volume = 9 | issue = 20 | pages = 1807–1818 | date = October 2002 | pmid = 12369879 | doi = 10.2174/0929867023368980 }}

Tabernanthine persistently reduced the self-administration of cocaine and morphine in rats.{{cite journal | vauthors = Glick SD, Kuehne ME, Raucci J, Wilson TE, Larson D, Keller RW, Carlson JN | title = Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum | journal = Brain Research | volume = 657 | issue = 1–2 | pages = 14–22 | date = September 1994 | pmid = 7820611 | doi = 10.1016/0006-8993(94)90948-2 | s2cid = 1940631 }}

Pharmacology

It is kappa opioid agonist (Ki = 0.15 μM) and NMDA receptor (Ki = 10.5 μM) antagonist.{{cite journal | vauthors = Deecher DC, Teitler M, Soderlund DM, Bornmann WG, Kuehne ME, Glick SD | title = Mechanisms of action of ibogaine and harmaline congeners based on radioligand binding studies | journal = Brain Research | volume = 571 | issue = 2 | pages = 242–247 | date = February 1992 | pmid = 1377086 | doi = 10.1016/0006-8993(92)90661-r | s2cid = 17159661 }}{{cite book| vauthors = Wiart C |title=Lead Compounds from Medicinal Plants for the Treatment of Neurodegenerative Diseases|url=https://books.google.com/books?id=o3opAgAAQBAJ&pg=PA67|date=16 December 2013|publisher=Academic Press|isbn=978-0-12-398383-1|pages=67–69, 73}} Compared to ibogaine, it binds weakly to σ1 and σ2 receptor.

See also

References

{{Reflist}}

{{Dependence treatment}}

{{Ionotropic glutamate receptor modulators}}

{{Opioid receptor modulators}}

{{Tryptamines}}

Category:Alkaloids found in Iboga

Category:NMDA receptor antagonists

Category:Azepines

Category:Quinuclidine alkaloids

Category:Tryptamine alkaloids

Category:Azepinoindoles

{{nervous-system-drug-stub}}