Table of specific heat capacities

{{Ambox

| name = Table of specific heat capacities

| type = content

| talk = {{{talk|#}}}

| fix =

| issue = Accuracy of the table is disputed.

| date = December 27, 2022

| nocat = true

}}

{{Ambox

| name = Table of specific heat capacities

| type = note

| talk = {{{talk|_keep_fractions_same_length}}}

| fix =

| issue = Tables: make sure the length of fractional part of the numbers is equal for the given column and numbers in cells don't have extra chars like * (asterisk). Sorting alogrithm may fail otherwise. See: Table:Sorting problems

| date = December 27, 2022

| nocat = true

}}

{{More footnotes needed|date=April 2025}}

{{short description|For some substances and engineering materials, includes volumetric and molar values}}

The table of specific heat capacities gives the volumetric heat capacity as well as the specific heat capacity of some substances and engineering materials, and (when applicable) the molar heat capacity.

Generally, the most notable constant parameter is the volumetric heat capacity (at least for solids) which is around the value of 3 megajoule per cubic meter per kelvin:Ashby, Shercliff, Cebon, Materials, Cambridge University Press, Chapter 12: Atoms in vibration: material and heat

\rho c_p \simeq 3\,\text{MJ}/(\text{m}^3{\cdot}\text{K})\quad \text{(solid)}

Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol−1⋅K−1 = 3 R per mole of atoms (see the last column of this table). For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom). The Dulong–Petit limit also explains why dense substances, such as lead, which have very heavy atoms, rank very low in mass heat capacity.

In the last column, major departures of solids at standard temperatures from the Dulong–Petit law value of 3 R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids.

{{sticky header}}

class="wikitable sortable sticky-header-multi" style="text-align:center"

|+ Table of specific heat capacities at 25 °C (298 K) unless otherwise noted.{{citation needed|date=February 2015}} Notable minima and maxima are shown in maroon.

rowspan=2 data-sort-type=text | Substance

! rowspan=2 data-sort-type=text | Phase

! rowspan=2 data-sort-type=number | Isobaric mass
heat capacity
cP
J⋅g−1⋅K−1

! colspan=2 | Molar heat capacity,
CP,m and CV,m
J⋅mol−1⋅K−1

! rowspan=2 data-sort-type=number | Isobaric
volumetric
heat capacity

CP,v
J⋅cm−3⋅K−1

! rowspan=2 data-sort-type=number | Isochoric
molar by atom
heat capacity
CV,am
mol-atom−1

data-sort-type=number | Isobaric

! data-sort-type=number | Isochoric

align=left| Air (Sea level, dry,
0 °C (273.15 K))
gas1.003529.07020.7640.001297
align=left| Air (typical
room conditionsA)
gas1.01229.19020.8500.00121
align=left| Aluminiumsolid0.89724.2002.4222.91 R
align=left| Ammonialiquid4.70080.0803.2603.21 R
align=left| Animal tissue
(incl. human)
Page 183 in: {{cite book|title=Medical biophysics|first=Flemming |last=Cornelius|edition= 6th |year= 2008|publisher=Springer |isbn=978-1-4020-7110-2}} (also giving a density of 1.06 kg/L)
mixed 3.5003.700
align=left| Antimonysolid0.20725.2001.3863.03 R
align=left| Argongas0.520320.78612.471
align=left| Arsenicsolid0.32824.6001.8782.96 R
align=left| Berylliumsolid1.82016.4003.3671.97 R
align=left| Bismuth{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/tables/sphtt.html#c1 |title=Table of Specific Heats}}solid0.12325.7001.2003.09 R
align=left| Cadmiumsolid0.23126.0202.0003.13 R
align=left| Carbon dioxide CO2{{cite book|title=Young and Geller College Physics|edition=8th|last1=Young|last2=Geller|publisher= Pearson Education|year= 2008|isbn=978-0-8053-9218-0}}gas0.839B36.94028.460
align=left| Chromiumsolid0.44923.3503.2102.81 R
align=left| Coppersolid0.38524.4703.4502.94 R
align=left| Diamondsolid0.5096.1151.7820.74 R
align=left| Ethanolliquid2.4401121.925
align=left| Gasoline (octane)liquid2.2202281.640
align=left| Glasssolid0.8402.100
align=left| Goldsolid0.12925.4202.4923.05 R
align=left| Granitesolid0.7902.170
align=left| Graphitesolid0.7108.5301.5341.03 R
align=left| Heliumgas5.19320.78612.471
align=left| Hydrogengas14.30028.820
align=left| Hydrogen sulfide H2Sgas1.015B34.600
align=left| Iron{{cite web | url=https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html | title=Specific Heat of Common Materials – Engineering Reference }}solid0.44925.090{{Cite book |title=Journal of Physical and Chemical Reference Data Monograph No. 9 |series=NIST-JANAF Thermochemical Tables |edition=Fourth |editor-last1=Chase |editor-first1=Malcolm W. |date=1998 |chapter=Iron (Fe) |chapter-url=https://janaf.nist.gov/tables/Fe-003.html |url=https://janaf.nist.gov/pdf/JANAF-FourthEd-1998-Iron.pdf |page=1221 |publisher=American Institute of Physics & American Chemical Society |publication-place=Woodbury, New York |isbn=1-56396-831-2 |oclc=39682152 |access-date=11 February 2025 }}3.5373.02 R
align=left| Leadsolid0.12926.4001.4403.18 R
align=left| Lithiumsolid3.58024.8001.9122.98 R
align=left| Lithium at 181 °C{{cite web|url=http://fusionnet.seas.ucla.edu/input/PDF/1997%20-%20Iter%20Material%20Properties%20Handbook%20-%20volAR01-3108%20-%20no1%20-%20p1-4.pdf |title=Materials Properties Handbook, Material: Lithium |url-status=dead |archiveurl=https://web.archive.org/web/20060905164310/http://fusionnet.seas.ucla.edu/input/PDF/1997%20-%20Iter%20Material%20Properties%20Handbook%20-%20volAR01-3108%20-%20no1%20-%20p1-4.pdf |archivedate=September 5, 2006 }}solid(?)4.233
align=left| Lithium at 181 °C{{cite web|url=http://fusionnet.seas.ucla.edu/input/PDF/1997%20-%20Iter%20Material%20Properties%20Handbook%20-%20volAR01-3108%20-%20no1%20-%20p1-4.pdf |title=Materials Properties Handbook, Material: Lithium |url-status=dead |archiveurl=https://web.archive.org/web/20060905164310/http://fusionnet.seas.ucla.edu/input/PDF/1997%20-%20Iter%20Material%20Properties%20Handbook%20-%20volAR01-3108%20-%20no1%20-%20p1-4.pdf |archivedate=September 5, 2006 }}liquid4.37930.3302.2423.65 R
align=left| Magnesiumsolid1.02024.9001.7732.99 R
align=left| Mercuryliquid0.139527.9801.8883.36 R
align=left| Methane at 2 °Cgas2.19135.690
align=left| Methanol{{cite web|title=HCV (Molar Heat Capacity (cV)) Data for Methanol| work=Dortmund Data Bank Software and Separation Technology |url=http://ddbonline.ddbst.de/EE/110%20HCV%20(Molar%20Heat%20Capacity%20(cV)).shtml}}liquid2.14068.6201.695
align=left| Molten salt (142–540 °C){{cite web|title=Heat Storage in Materials| work=The Engineering Toolbox |url=http://www.engineeringtoolbox.com/sensible-heat-storage-d_1217.html}}liquid1.5602.620
align=left| Nitrogengas1.04029.12020.800
align=left| Neongas1.03020.78612.471
align=left| Oxygengas0.91829.38021.000
align=left| Paraffin wax
C25H52
solid2.5009002.325
align=left| Polyethylene
(rotomolding grade){{cite book|first=R. J.|last= Crawford|title= Rotational molding of plastics|isbn=978-1-59124-192-8}}{{cite journal|url=https://www.nist.gov/data/PDFfiles/jpcrd178.pdf|doi=10.1063/1.555636|title=Heat capacity and other thermodynamic properties of linear macromolecules. II. Polyethylene|year=1981|last1=Gaur|first1=Umesh|last2=Wunderlich|first2=Bernhard|journal=Journal of Physical and Chemical Reference Data|volume=10|issue=1|page=119|bibcode = 1981JPCRD..10..119G }}
solid2.3022.150
align=left| Silica (fused)solid0.70342.2001.547
align=left| Silversolid0.23324.9002.4402.99 R
align=left| Sodiumsolid1.23028.2301.1903.39 R
align=left| Steelsolid0.4663.756
align=left| Tinsolid0.22727.1121.6593.26 R
align=left| Titaniumsolid0.52326.0602.6383.13 R
align=left| Tungstensolid0.13424.8002.5802.98 R
align=left| Uraniumsolid0.11627.7002.2163.33 R
align=left| Water at 100 °C (steam)gas2.03036.50027.5001.530
align=left| Water at 25 °Cliquid4.18175.34074.5504.138
align=left| Water at 100 °Cliquid4.216 {{Dubious|date=May 2023}}75.95067.9003.770
align=left| Water at −10 °C (ice)solid2.05038.0901.938
align=left| Zincsolid0.38725.2002.7603.03 R
class="sortbottom"

! Substance

! Phase

! Isobaric
mass
heat capacity
cP
J⋅g−1⋅K−1

! Isobaric
molar
heat capacity
CP,m
J⋅mol−1⋅K−1

! Isochore
molar
heat capacity
CV,m
J⋅mol−1⋅K−1

! Isobaric
volumetric
heat capacity

CP,v
J⋅cm−3⋅K−1

! Isochore
atom-molar
heat capacity
in units of R
CV,am
atom-mol−1

A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).

B Calculated values


*Derived data by calculation. This is for water-rich tissues such as brain. The whole-body average figure for mammals is approximately 2.9 J⋅cm−3⋅K−1

{{cite journal|doi=10.1111/j.1748-1716.1995.tb09850.x|pmid=7778459|title=Fat content affects heat capacity: a study in mice|year=1995|last1=Faber|first1=P.|last2=Garby|first2=L.|journal=Acta Physiologica Scandinavica|volume=153|issue=2|pages=185–7}}

Mass heat capacity of building materials

{{See also|Thermal mass}}

(Usually of interest to builders and solar )

class="wikitable sortable" style="text-align:center"

|+Mass heat capacity of building materials

Substance

! Phase

! cP
J⋅g−1⋅K−1

align=left|Asphaltsolid0.920
align=left| Bricksolid0.840
align=left| Concretesolid0.880
align=left| Glass, silicaliquid0.840
align=left| Glass, crownliquid0.670
align=left| Glass, flintliquid0.503
align=left| Glass, borosilicateliquid0.753
align=left| Granitesolid0.790
align=left| Gypsumsolid1.090
align=left| Marble, micasolid0.880
align=left| Sandsolid0.835
align=left| Soilsolid0.800
align=left| Waterliquid4.1813
align=left| Woodsolid1.7 (1.2 to 2.9)
class="sortbottom"

! Substance

! Phase

! cP
J⋅g−1⋅K−1

Human body

The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera).{{cite journal |last1=Xu |first1=Xiaojiang |last2=Rioux |first2=Timothy P. |last3=Castellani |first3=Michael P. |date=2023 |title=The specific heat of the human body is lower than previously believed: The journal Temperature toolbox |journal=Temperature |volume=10 |issue=2 |pages=235–239 |doi=10.1080/23328940.2022.2088034 |issn=2332-8940 |pmc=10274559 |pmid=37332308}}

See also

References

{{reflist}}{{Navbox chemical elements data}}

Category:Heat conduction