Talk:Star polygon/Gallery

Gallery

= Regular star polygon graphs =

I generated SVG images for all regular star polygons up to 50 sides, specifically {p/q}, q

gcd(p,q)=1. It's VERY long for the article, so I put them here for reference. I copied ones up to 20 at List_of_regular_polytopes#Stars. Tom Ruen (talk) 09:35, 22 January 2015 (UTC)

class=wikitable
align=center

|80px
{5/2}

|80px
{7/2}

|80px
{7/3}

|80px
{8/3}

|80px
{9/2}

|80px
{9/4}

|80px
{10/3}

align=center

|80px
{11/2}

|80px
{11/3}

|80px
{11/4}

|80px
{11/5}

|80px
{12/5}

align=center

|80px
{13/2}

|80px
{13/3}

|80px
{13/4}

|80px
{13/5}

|80px
{13/6}

|80px
{14/3}

|80px
{14/5}

align=center

|80px
{15/2}

|80px
{15/4}

|80px
{15/7}

|80px
{16/3}

|80px
{16/5}

|80px
{16/7}

align=center

|80px
{17/2}

|80px
{17/3}

|80px
{17/4}

|80px
{17/5}

|80px
{17/6}

|80px
{17/7}

|80px
{17/8}

|80px
{18/5}

|80px
{18/7}

align=center

|80px
{19/2}

|80px
{19/3}

|80px
{19/4}

|80px
{19/5}

|80px
{19/6}

|80px
{19/7}

|80px
{19/8}

|80px
{19/9}

align=center

|80px
{20/3}

|80px
{20/7}

|80px
{20/9}

|80px
{21/2}

|80px
{21/4}

|80px
{21/5}

|80px
{21/8}

|80px
{21/10}

align=center

|80px
{22/3}

|80px
{22/5}

|80px
{22/7}

|80px
{22/9}

align=center

|80px
{23/2}

|80px
{23/3}

|80px
{23/4}

|80px
{23/5}

|80px
{23/6}

|80px
{23/7}

|80px
{23/8}

|80px
{23/9}

|80px
{23/10}

|80px
{23/11}

align=center

|80px
{24/5}

|80px
{24/7}

|80px
{24/11}

align=center

|80px
{25/2}

|80px
{25/3}

|80px
{25/4}

|80px
{25/6}

|80px
{25/7}

|80px
{25/8}

|80px
{25/9}

|80px
{25/11}

|80px
{25/12}

align=center

|80px
{26/3}

|80px
{26/5}

|80px
{26/7}

|80px
{26/9}

|80px
{26/11}

align=center

|80px
{27/2}

|80px
{27/4}

|80px
{27/5}

|80px
{27/7}

|80px
{27/8}

|80px
{27/10}

|80px
{27/11}

|80px
{27/13}

align=center

|80px
{28/3}

|80px
{28/5}

|80px
{28/9}

|80px
{28/11}

|80px
{28/13}

align=center

|80px
{29/2}

|80px
{29/3}

|80px
{29/4}

|80px
{29/5}

|80px
{29/6}

|80px
{29/7}

|80px
{29/8}

|80px
{29/9}

|80px
{29/10}

|80px
{29/11}

|80px
{29/12}

|80px
{29/13}

|80px
{29/14}

align=center

|80px
{30/7}

|80px
{30/11}

|80px
{30/13}

align=center

|80px
{31/2}

|80px
{31/3}

|80px
{31/4}

|80px
{31/5}

|80px
{31/6}

|80px
{31/7}

|80px
{31/8}

|80px
{31/9}

|80px
{31/10}

|80px
{31/11}

|80px
{31/12}

|80px
{31/13}

|80px
{31/14}

|80px
{31/15}

align=center

|80px
{32/3}

|80px
{32/5}

|80px
{32/7}

|80px
{32/9}

|80px
{32/11}

|80px
{32/13}

|80px
{32/15}

align=center

|80px
{33/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{34/3}

|80px
{34/5}

|80px
{34/7}

|80px
{34/9}

|80px
{34/11}

|80px
{34/13}

|80px
{34/15}

align=center

|80px
{35/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{36/5}

|80px

|80px

|80px

|80px

align=center

|80px
{37/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{38/11}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{39/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{40/3}

|80px
{40/7}

|80px
{40/9}

|80px
{40/11}

|80px
{40/13}

|80px
{40/17}

|80px
{40/19}

align=center

|80px
{41/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{42/5}

|80px
{42/11}

|80px
{42/13}

|80px
{42/17}

|80px
{42/19}

align=center

|80px
{43/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{44/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{46/3}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{47/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{48/5}

|80px
{48/7}

|80px
{48/11}

|80px
{48/13}

|80px
{48/17}

|80px
{48/19}

|80px
{48/23}

align=center

|80px
{49/2}

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

|80px
{50/3}

|80px
{50/7}

|80px
{50/9}

|80px
{50/11}

|80px
{50/13}

|80px
{50/17}

|80px
{50/23}

|80px
{50/19}

|80px
{50/21}

align=center

|80px
{60/7}

|80px
{60/11}

|80px
{60/13}

|80px
{60/17}

|80px
{60/19}

|80px
{60/23}

|80px
{60/29}

align=center

|80px
{64/3}

|80px
{64/5}

|80px
{64/7}

|80px
{64/9}

|80px
{64/11}

|80px
{64/13}

|80px
{64/15}

|80px
{64/17}

|80px
{64/19}

|80px
{64/21}

|80px
{64/23}

|80px
{64/25}

|80px
{64/27}

|80px
{64/29}

|80px
{64/31}

align=center

|80px
{70/3}

|80px
{70/9}

|80px
{70/11}

|80px
{70/13}

|80px
{70/17}

|80px
{70/19}

|80px
{70/23}

|80px
{70/27}

|80px
{70/29}

|80px
{70/31}

|80px
{70/33}

align=center

|80px
{80/7}

|80px
{80/9}

|80px
{80/3}

|80px
{80/19}

|80px
{80/13}

|80px
{80/11}

|80px
{80/17}

|80px
{80/27}

|80px
{80/23}

|80px
{80/29}

|80px
{80/31}

|80px
{80/21}

|80px
{80/39}

|80px
{80/37}

|80px
{80/33}

align=center

|80px
{90/7}

|80px
{90/11}

|80px
{90/13}

|80px
{90/17}

|80px
{90/23}

|80px
{90/19}

|80px
{90/31}

|80px
{90/29}

|80px
{90/43}

|80px
{90/37}

|80px
{90/41}

align=center

|80px
{96/5}

|80px
{96/7}

|80px
{96/11}

|80px
{96/13}

|80px
{96/17}

|80px
{96/19}

|80px
{96/23}

|80px
{96/25}

|80px
{96/29}

|80px
{96/31}

|80px
{96/35}

|80px
{96/37}

|80px
{96/41}

|80px
{96/43}

|80px
{96/47}

align=center

|80px
{100/3}

|80px
{100/9}

|80px
{100/7}

|80px
{100/11}

|80px
{100/13}

|80px
{100/21}

|80px
{100/19}

|80px
{100/17}

|80px
{100/27}

|80px
{100/31}

|80px
{100/29}

|80px
{100/23}

|80px
{100/41}

|80px
{100/33}

|80px
{100/37}

|80px
{100/39}

|80px
{100/43}

|80px
{100/47}

|80px
{100/49}

= Regular star figures graphs =

Here's some star figures (compounds) too, n{p/q} with p=2..16, q=1..p/2, and n*p<32. I colored the edges, but looks like yellow was a poor color choice. Tom Ruen (talk) 10:52, 22 January 2015 (UTC) Digon compounds added in first row. Tom Ruen (talk) 18:56, 31 January 2015 (UTC)

class=wikitable
align=center

|80px
2{2}

|80px
3{2}

|80px
4{2}

|80px
5{2}

|80px
6{2}

|80px
7{2}

|80px
8{2}

|80px
9{2}

|80px
10{2}

align=center

|80px
2{3}

|80px
3{3}

|80px
4{3}

|80px
5{3}

|80px
6{3}

|80px
7{3}

|80px
8{3}

|80px
9{3}

|80px
10{3}

align=center

|80px
2{4}

|80px
3{4}

|80px
4{4}

|80px
5{4}

|80px
6{4}

|80px
7{4}

align=center

|80px
2{5}

|80px
3{5}

|80px
4{5}

|80px
5{5}

|80px
6{5}

|80px
2{5/2}

|80px
3{5/2}

|80px
4{5/2}

|80px
5{5/2}

|80px
6{5/2}

align=center

|80px
2{6}

|80px
3{6}

|80px
4{6}

|80px
5{6}

align=center

|80px
2{7}

|80px
3{7}

|80px
4{7}

|80px
2{7/2}

|80px
3{7/2}

|80px
4{7/2}

|80px
2{7/3}

|80px
3{7/3}

|80px
4{7/3}

align=center

|80px
2{8}

|80px
3{8}

|80px
2{8/3}

|80px
3{8/3}

|80px
2{9}

|80px
3{9}

|80px
2{9/2}

|80px
3{9/2}

|80px
2{9/4}

|80px
3{9/4}

align=center

|80px
2{10}

|80px
3{10}

|80px
2{10/3}

|80px
3{10/3}

|80px
2{11}

|80px
2{11/2}

|80px
2{11/3}

|80px
2{11/4}

|80px
2{11/5}

align=center

|80px
2{12}

|80px
2{12/5}

|80px
2{13}

|80px
2{13/2}

|80px
2{13/3}

|80px
2{13/4}

|80px
2{13/5}

|80px
2{13/6}

align=center

|80px
2{14}

|80px
2{14/3}

|80px
2{14/5}

|80px
2{15}

|80px
2{15/2}

|80px
2{15/4}

|80px
2{15/7}

|80px
6{7/2}

|80px
20{5/2}

= Isogonal stars=

These star polygons are isogonal (vertex-transitive), all solutions for equal-spaced vertices, p=3..16. They have two edge lengths in general, while some have equal edge lengths and are also regular: t{p/q}={2p/q} for odd(q), and t{p/(2p-q)}={2p/(2p-q)} for odd(2p-q). Tom Ruen (talk) 04:01, 29 January 2015 (UTC)

class=wikitable

|+ Isogonal star polygons as truncations of regular convex polygons

align=center

|80px
{3}:t2

align=center

|80px
{4}:t2

|BGCOLOR="#e0e0ff"|80px
{4}:t3
t{4/3}={8/3}

align=center

|80px
{5}:t2

|80px
{5}:t3

align=center

|80px
{6}:t2

|80px
{6}:t3

|BGCOLOR="#e0e0ff"|80px
{6}:t4
t{6/5}={12/5}

align=center

|80px
{7}:t2

|80px
{7}:t3

|80px
{7}:t4

align=center

|80px
{8}:t2

|80px
{8}:t3

|80px
{8}:t4

|BGCOLOR="#e0e0ff"|80px
{8}:t5
t{8/7}={16/7}

align=center

|80px
{9}:t2

|80px
{9}:t3

|80px
{9}:t4

|80px
{9}:t5

align=center

|80px
{10}:t2

|80px
{10}:t3

|80px
{10}:t4

|80px
{10}:t5

|BGCOLOR="#e0e0ff"|80px
{10}:t6
t{10/9}={20/9}

align=center

|80px
{11}:t2

|80px
{11}:t3

|80px
{11}:t4

|80px
{11}:t5

|80px
{11}:t6

align=center

|80px
{12}:t2

|80px
{12}:t3

|80px
{12}:t4

|80px
{12}:t5

|80px
{12}:t6

|BGCOLOR="#e0e0ff"|80px
{12}:t7
t{12/11}={24/11}

align=center

|80px
{13}:t2

|80px
{13}:t3

|80px
{13}:t4

|80px
{13}:t5

|80px
{13}:t6

|80px
{13}:t7

align=center

|80px
{14}:t2

|80px
{14}:t3

|80px
{14}:t4

|80px
{14}:t5

|80px
{14}:t6

|80px
{14}:t7

|BGCOLOR="#e0e0ff"|80px
{14}:t8
t{14/13}={28/13}

align=center

|80px
{15}:t2

|80px
{15}:t3

|80px
{15}:t4

|80px
{15}:t5

|80px
{15}:t6

|80px
{15}:t7

|80px
{15}:t8

align=center

|80px
{16}:t2

|80px
{16}:t3

|80px
{16}:t4

|80px
{16}:t5

|80px
{16}:t6

|80px
{16}:t7

|80px
{16}:t8

|BGCOLOR="#e0e0ff"|80px
{16}:t9
t{16/15}={32/15}

class=wikitable

|+ Isogonal star polygons as truncations of star polygons

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{5/3}={10/3}

|80px
{5/3}:t2

|80px
{5/3}:t3

align=center

|BGCOLOR="#e0e0ff"|80px
t{7/3}={14/3}

|80px
{7/3}:t2

|80px
{7/3}:t3

|80px
{7/3}:t4

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{7/5}={14/5}

|80px
{7/5}:t2

|80px
{7/5}:t3

|80px
{7/5}:t4

align=center

|BGCOLOR="#e0e0ff"|80px
t{8/3}={16/3}

|80px
{8/3}:t2

|80px
{8/3}:t3

|80px
{8/3}:t4

|BGCOLOR="#e0e0ff"|80px
{8/3}:t5
t{8/5}={16/5}

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{9/5}={18/5}

|80px
{9/5}:t2

|80px
{9/5}:t3

|80px
{9/5}:t4

|80px
{9/5}:t5

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{9/7}={18/7}

|80px
{9/7}:t2

|80px
{9/7}:t3

|80px
{9/7}:t4

|80px
{9/7}:t5

align=center

|BGCOLOR="#e0e0ff"|80px
t{10/3}={20/3}

|80px
{10/3}:t2

|80px
{10/3}:t3

|80px
{10/3}:t4

|80px
{10/3}:t5

|BGCOLOR="#e0e0ff"|80px
{10/3}:t6
t{10/7}={20/7}

align=center

|BGCOLOR="#e0e0ff"|80px
t{11/3}={22/3}

|80px
{11/3}:t2

|80px
{11/3}:t3

|80px
{11/3}:t4

|80px
{11/3}:t5

|80px
{11/3}:t6

align=center

|BGCOLOR="#e0e0ff"|80px
t{11/5}={22/5}

|80px
{11/5}:t2

|80px
{11/5}:t3

|80px
{11/5}:t4

|80px
{11/5}:t5

|80px
{11/5}:t6

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{11/7}={22/7}

|80px
{11/7}:t2

|80px
{11/7}:t3

|80px
{11/7}:t4

|80px
{11/7}:t5

|80px
{11/7}:t6

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{11/9}={22/9}

|80px
{11/9}:t2

|80px
{11/9}:t3

|80px
{11/9}:t4

|80px
{11/9}:t5

|80px
{11/9}:t6

align=center

|BGCOLOR="#e0e0ff"|80px
t{12/5}={24/5}

|80px
{12/5}:t2

|80px
{12/5}:t3

|80px
{12/5}:t4

|80px
{12/5}:t5

|80px
{12/5}:t6

|BGCOLOR="#e0e0ff"|80px
{12/5}:t7
t{12/7}={24/7}

align=center

|BGCOLOR="#e0e0ff"|80px
t{13/3}={26/3}

|80px
{13/3}:t2

|80px
{13/3}:t3

|80px
{13/3}:t4

|80px
{13/3}:t5

|80px
{13/3}:t6

|80px
{13/3}:t7

align=center

|BGCOLOR="#e0e0ff"|80px
t{13/5}={26/5}

|80px
{13/5}:t2

|80px
{13/5}:t3

|80px
{13/5}:t4

|80px
{13/5}:t5

|80px
{13/5}:t6

|80px
{13/5}:t7

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{13/7}={26/7}

|80px
{13/7}:t2

|80px
{13/7}:t3

|80px
{13/7}:t4

|80px
{13/7}:t5

|80px
{13/7}:t6

|80px
{13/7}:t7

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{13/9}={26/9}

|80px
{13/9}:t2

|80px
{13/9}:t3

|80px
{13/9}:t4

|80px
{13/9}:t5

|80px
{13/9}:t6

|80px
{13/9}:t7

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{13/11}={26/11}

|80px
{13/11}:t2

|80px
{13/11}:t3

|80px
{13/11}:t4

|80px
{13/11}:t5

|80px
{13/11}:t6

|80px
{13/11}:t7

align=center

|BGCOLOR="#e0e0ff"|80px
t{14/3}={28/3}

|80px
{14/3}:t2

|80px
{14/3}:t3

|80px
{14/3}:t4

|80px
{14/3}:t5

|80px
{14/3}:t6

|80px
{14/3}:t7

|BGCOLOR="#e0e0ff"|80px
{14/3}:t8
t{14/11}={28/11}

align=center

|BGCOLOR="#e0e0ff"|80px
t{14/5}={28/5}

|80px
{14/5}:t2

|80px
{14/5}:t3

|80px
{14/5}:t4

|80px
{14/5}:t5

|80px
{14/5}:t6

|80px
{14/5}:t7

|BGCOLOR="#e0e0ff"|80px
{14/5}:t8
t{14/9}={28/9}

align=center

|BGCOLOR="#e0e0ff"|80px
t{15/7}={30/7}

|80px
{15/7}:t2

|80px
{15/7}:t3

|80px
{15/7}:t4

|80px
{15/7}:t5

|80px
{15/7}:t6

|80px
{15/7}:t7

|80px
{15/7}:t8

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{15/11}={30/22}

|80px
{15/11}:t2

|80px
{15/11}:t3

|80px
{15/11}:t4

|80px
{15/11}:t5

|80px
{15/11}:t6

|80px
{15/11}:t7

|80px
{15/11}:t8

align=center valign=top

|BGCOLOR="#ffe0e0"|80px
t{15/13}={30/13}

|80px
{15/13}:t2

|80px
{15/13}:t3

|80px
{15/13}:t4

|80px
{15/13}:t5

|80px
{15/13}:t6

|80px
{15/13}:t7

|80px
{15/13}:t8

align=center

|BGCOLOR="#e0e0ff"|80px
t{16/3}={32/3}

|80px
{16/3}:t2

|80px
{16/3}:t3

|80px
{16/3}:t4

|80px
{16/3}:t5

|80px
{16/3}:t6

|80px
{16/3}:t7

|80px
{16/3}:t8

|BGCOLOR="#e0e0ff"|80px
{16/3}:t9
t{16/13}={32/13}

align=center

|BGCOLOR="#e0e0ff"|80px
t{16/5}={32/5}

|80px
{16/5}:t2

|80px
{16/5}:t3

|80px
{16/5}:t4

|80px
{16/5}:t5

|80px
{16/5}:t6

|80px
{16/5}:t7

|80px
{16/5}:t8

|BGCOLOR="#e0e0ff"|80px
{16/5}:t9
t{16/11}={32/11}

align=center

|BGCOLOR="#e0e0ff"|80px
t{16/7}={32/7}

|80px
{16/7}:t2

|80px
{16/7}:t3

|80px
{16/7}:t4

|80px
{16/7}:t5

|80px
{16/7}:t6

|80px
{16/7}:t7

|80px
{16/7}:t8

|BGCOLOR="#e0e0ff"|80px
{16/7}:t9
t{16/9}={32/9}