Tate duality

In mathematics, Tate duality or Poitou–Tate duality is a duality theorem for Galois cohomology groups of modules over the Galois group of an algebraic number field or local field, introduced by {{harvs|txt|last=Tate|first=John|author-link=John Tate (mathematician)|year=1962}} and {{harvs|txt|last=Poitou|first=Georges|year=1967}}.

Local Tate duality

{{main|local Tate duality}}

For a p-adic local field k, local Tate duality says there is a perfect pairing of the finite groups arising from Galois cohomology:

:\displaystyle H^r(k,M)\times H^{2-r}(k,M')\rightarrow H^2(k,\mathbb{G}_m)=\Q/ \Z

where M is a finite group scheme, M' its dual \operatorname{Hom}(M,G_m), and \mathbb{G}_m is the multiplicative group.

For a local field of characteristic p>0, the statement is similar, except that the pairing takes values in H^2(k, \mu) = \bigcup_{p \nmid n} \tfrac{1}{n} \Z/\Z.{{harvtxt|Neukirch|Schmidt|Wingberg|2000|loc=Theorem 7.2.6}} The statement also holds when k is an Archimedean field, though the definition of the cohomology groups looks somewhat different in this case.

Global Tate duality

Given a finite group scheme M over a global field k, global Tate duality relates the cohomology of M with that of M' = \operatorname{Hom}(M,G_m) using the local pairings constructed above. This is done via the localization maps

: \alpha_{r, M}: H^r(k, M) \rightarrow {\prod_v}' H^r(k_v, M),

where v varies over all places of k, and where \prod' denotes a restricted product with respect to the unramified cohomology groups. Summing the local pairings gives a canonical perfect pairing

:{\prod_v}' H^r(k_v, M) \times {\prod_v}' H^{2- r}(k_v, M') \rightarrow \Q/\Z .

One part of Poitou-Tate duality states that, under this pairing, the image of H^r(k, M) has annihilator equal to the image of H^{2-r}(k, M') for r = 0, 1, 2.

The map \alpha_{r, M} has a finite kernel for all r, and Tate also constructs a canonical perfect pairing

: \text{ker}(\alpha_{1, M}) \times \ker(\alpha_{2, M'}) \rightarrow \Q/\Z .

These dualities are often presented in the form of a nine-term exact sequence

: 0 \rightarrow H^0(k, M) \rightarrow {\prod_v}' H^0(k_v, M) \rightarrow H^2(k, M')^*

: \rightarrow H^1(k, M) \rightarrow {\prod_v}' H^1(k_v, M) \rightarrow H^1(k, M')^*

: \rightarrow H^2(k, M) \rightarrow {\prod_v}' H^2(k_v, M) \rightarrow H^0(k, M')^* \rightarrow 0.

Here, the asterisk denotes the Pontryagin dual of a given locally compact abelian group.

All of these statements were presented by Tate in a more general form depending on a set of places S of k, with the above statements being the form of his theorems for the case where S contains all places of k. For the more general result, see e.g.

{{harvtxt|Neukirch|Schmidt|Wingberg|2000|loc=Theorem 8.4.4}}.

Poitou–Tate duality

Among other statements, Poitou–Tate duality establishes a perfect pairing between certain Shafarevich groups. Given a global field k, a set S of primes, and the maximal extension k_S which is unramified outside S, the Shafarevich groups capture, broadly speaking, those elements in the cohomology of \operatorname{Gal}(k_S/k) which vanish in the Galois cohomology of the local fields pertaining to the primes in S.See {{harvtxt|Neukirch|Schmidt|Wingberg|2000|loc=Theorem 8.6.8}} for a precise statement.

An extension to the case where the ring of S-integers \mathcal{O}_S is replaced by a regular scheme of finite type over \operatorname{Spec} \mathcal{O}_S was shown by {{harvtxt|Geisser|Schmidt|2018}}. Another generalisation is due to Česnavičius, who relaxed the condition on the localising set S by using flat cohomology on smooth proper curves.{{Cite journal |last=Česnavičius |first=Kęstutis |date=2015 |title=Poitou–Tate without restrictions on the order |url=https://www.intlpress.com/site/pub/files/_fulltext/journals/mrl/2015/0022/0006/MRL-2015-0022-0006-a005.pdf |journal=Mathematical Research Letters |volume=22 |issue=6 |pages=1621–1666|doi=10.4310/MRL.2015.v22.n6.a5 }}

See also

References

  • {{Citation|arxiv=1709.06913|title=Poitou-Tate duality for arithmetic schemes|last1=Geisser|first1=Thomas H.|first2=Alexander|last2=Schmidt|journal=Compositio Mathematica|volume=154|issue=9|pages=2020–2044|year=2018|bibcode=2017arXiv170906913G|doi=10.1112/S0010437X18007340|s2cid=119735104 }}
  • {{Citation | last1=Haberland | first1=Klaus | title=Galois cohomology of algebraic number fields | url=https://books.google.com/books?id=PwbvAAAAMAAJ | publisher=VEB Deutscher Verlag der Wissenschaften |mr=519872 | year=1978| isbn=9780685872048 }}
  • {{Citation|last1=Neukirch|first1=Jürgen|last2=Schmidt|first2=Alexander|last3=Wingberg|first3=Kay|title=Cohomology of number fields|publisher=Springer|year=2000|isbn=3-540-66671-0|mr=1737196}}
  • {{Citation | last1=Poitou | first1=Georges | title=Cohomologie galoisienne des modules finis | url=https://books.google.com/books?id=E3GmAAAAIAAJ | publisher=Dunod | location=Paris | series=Séminaire de l'Institut de Mathématiques de Lille, sous la direction de G. Poitou. Travaux et Recherches Mathématiques |mr=0219591 | year=1967 | volume=13 | chapter=Propriétés globales des modules finis | pages=255–277}}
  • {{Citation | last1=Tate | first1=John | author1-link=John Tate (mathematician) | title=Proceedings of the International Congress of Mathematicians (Stockholm, 1962) | chapter-url=http://mathunion.org/ICM/ICM1962.1/ | publisher=Inst. Mittag-Leffler | location=Djursholm | mr=0175892 | year=1962 | chapter=Duality theorems in Galois cohomology over number fields | pages=288–295 | url-status=dead | archiveurl=https://web.archive.org/web/20110717144510/http://mathunion.org/ICM/ICM1962.1/ | archivedate=2011-07-17 }}

Category:Algebraic number theory

Category:Galois theory

Category:Duality theories