Template:A4 honeycombs
This honeycomb is one of seven unique uniform honeycombs[http://mathworld.wolfram.com/Necklace.html mathworld: Necklace], {{OEIS el|1=A000029}} 8-1 cases, skipping one with zero marks constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:
class="wikitable mw-collapsible mw-collapsed"
!colspan=5| A4 honeycombs |
Pentagon symmetry !Extended !Extended !Honeycomb diagrams |
---|
a1
![3[5]] !{{CDD|node|split1|nodes|3ab|branch}} | | (None) |
i2
!{{Brackets|3{{Bracket|5}}}} !{{CDD|node_c1|split1|nodeab_c2|3ab|branch_c3}} | ×2 |{{CDD|node_1|split1|nodes|3ab|branch}} 1,{{CDD|node|split1|nodes_11|3ab|branch}} 2,{{CDD|node|split1|nodes|3ab|branch_11}} 3, {{CDD|node_1|split1|nodes_11|3ab|branch}} 4,{{CDD|node_1|split1|nodes|3ab|branch_11}} 5,{{CDD|node|split1|nodes_11|3ab|branch_11}} 6 |
r10
![5[3[5]]] !{{CDD|node_c1|split1|nodeab_c1|3ab|branch_c1}} | ×10 |{{CDD|node_1|split1|nodes_11|3ab|branch_11}} 7 |
References
{{reflist}}