Template:A4 honeycombs

This honeycomb is one of seven unique uniform honeycombs[http://mathworld.wolfram.com/Necklace.html mathworld: Necklace], {{OEIS el|1=A000029}} 8-1 cases, skipping one with zero marks constructed by the {\tilde{A}}_4 Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

class="wikitable mw-collapsible mw-collapsed"

!colspan=5| A4 honeycombs

Pentagon
symmetry

!Extended
symmetry

!Extended
diagram

!Extended
group

!Honeycomb diagrams

a1

![3[5]]

!{{CDD|node|split1|nodes|3ab|branch}}

|{\tilde{A}}_4

| (None)

i2

!{{Brackets|3{{Bracket|5}}}}

!{{CDD|node_c1|split1|nodeab_c2|3ab|branch_c3}}

| {\tilde{A}}_4×2

|{{CDD|node_1|split1|nodes|3ab|branch}} 1,{{CDD|node|split1|nodes_11|3ab|branch}} 2,{{CDD|node|split1|nodes|3ab|branch_11}} 3,

{{CDD|node_1|split1|nodes_11|3ab|branch}} 4,{{CDD|node_1|split1|nodes|3ab|branch_11}} 5,{{CDD|node|split1|nodes_11|3ab|branch_11}} 6

r10

![5[3[5]]]

!{{CDD|node_c1|split1|nodeab_c1|3ab|branch_c1}}

| {\tilde{A}}_4×10

|{{CDD|node_1|split1|nodes_11|3ab|branch_11}} 7

References