Template:Regular convex 4-polytopes

class="wikitable mw-collapsible {{{collapsestate|mw-collapsed}}}" style="white-space:nowrap;text-align:center;"

!colspan=8|Regular convex 4-polytopes {{#if:{{{radius

}}|of radius {{{radius|}}}|}}

|-

!style="text-align:right;"|Symmetry group

|A4

|colspan=2|B4

|F4

|colspan=2|H4

|-

!style="vertical-align:top;text-align:right;"|Name

|style="vertical-align:top;"|5-cell

Hyper-tetrahedron

5-point

|style="vertical-align:top;"|16-cell

Hyper-octahedron

8-point

|style="vertical-align:top;"|8-cell

Hyper-cube

16-point

|style="vertical-align:top;"|24-cell


24-point

|style="vertical-align:top;"|600-cell

Hyper-icosahedron

120-point

|style="vertical-align:top;"|120-cell

Hyper-dodecahedron

600-point

|-

!style="text-align:right;"|Schläfli symbol

|{3, 3, 3}

|{3, 3, 4}

|{4, 3, 3}

|{3, 4, 3}

|{3, 3, 5}

|{5, 3, 3}

|-

!style="text-align:right;"|Coxeter mirrors

|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|3|node}}

|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|4|node}}

|{{Coxeter–Dynkin diagram|node_1|4|node|3|node|3|node}}

|{{Coxeter–Dynkin diagram|node_1|3|node|4|node|3|node}}

|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|5|node}}

|{{Coxeter–Dynkin diagram|node_1|5|node|3|node|3|node}}

|-

!style="text-align:right;"|Mirror dihedrals

|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|4}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|{{sfrac|𝝅|4}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|{{sfrac|𝝅|3}} {{sfrac|𝝅|4}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|5}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|{{sfrac|𝝅|5}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}

|-

!style="vertical-align:top;text-align:right;"|Graph

|120px

|120px

|120px

|120px

|120px

|120px

|-

!style="text-align:right;"|Vertices

|5 tetrahedral

|8 octahedral

|16 tetrahedral

|24 cubical

|120 icosahedral

|600 tetrahedral

|-

!style="vertical-align:top;text-align:right;"|Edges

|10 triangular

|24 square

|32 triangular

|96 triangular

|720 pentagonal

|1200 triangular

|-

!style="vertical-align:top;text-align:right;"|Faces

|10 triangles

|32 triangles

|24 squares

|96 triangles

|1200 triangles

|720 pentagons

|-

!style="vertical-align:top;text-align:right;"|Cells

|5 tetrahedra

|16 tetrahedra

|8 cubes

|24 octahedra

|600 tetrahedra

|120 dodecahedra

|-

!style="vertical-align:top;text-align:right;"|Tori

|1 5-tetrahedron

|2 8-tetrahedron

|2 4-cube

|4 6-octahedron

|20 30-tetrahedron

|12 10-dodecahedron

|-

!style="vertical-align:top;text-align:right;"|Inscribed

|120 in 120-cell

|675 in 120-cell

|2 16-cells

|3 8-cells

|25 24-cells

|10 600-cells

|-

!style="vertical-align:top;text-align:right;"|Great polygons

|

|2 squares x 3

|4 rectangles x 4

|4 hexagons x 4

|12 decagons x 6

|100 irregular hexagons x 4

|-

!style="vertical-align:top;text-align:right;"|Petrie polygons

|1 pentagon x 2

|1 octagon x 3

|2 octagons x 4

|2 dodecagons x 4

|4 30-gons x 6

|20 30-gons x 4

|-

!style="vertical-align:top;text-align:right;"|{{#ifeq:{{{radius|}}}|1|Long radius|{{#ifeq:{{{radius|}}}|{{radic|2}}|Long radius|Long radius}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2}}}}}

|-

!style="vertical-align:top;text-align:right;"|Edge length

|{{#ifeq:{{{radius|1}}}|1|\sqrt{\tfrac{5}{2}} \approx 1.581|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{5} \approx 2.236}}}}

|{{#ifeq:{{{radius|1}}}|1|\sqrt{2} \approx 1.414|{{#ifeq:{{{radius}}}|{{radic|2}}|2}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2} \approx 1.414}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{2} \approx 1.414}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{1}{\phi} \approx 0.618|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\sqrt{2}}{\phi} \approx 0.874}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{1}{\phi^2\sqrt{2}} \approx 0.270|{{#ifeq:{{{radius}}}|{{radic|2}}|2-\phi \approx 0.382}}}}

|-

!style="vertical-align:top;text-align:right;"|Short radius

|{{#ifeq:{{{radius|1}}}|1|\tfrac{1}{4}|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\sqrt{2}}{4} \approx 0.354}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{1}{2}|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\sqrt{2}}{2} \approx 0.707}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{1}{2}|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\sqrt{2}}{2} \approx 0.707}}}}

|{{#ifeq:{{{radius|1}}}|1|\sqrt{\tfrac{1}{2}} \approx 0.707|{{#ifeq:{{{radius}}}|{{radic|2}}|1}}}}

|{{#ifeq:{{{radius|1}}}|1|\sqrt{\tfrac{\phi^4}{8}} \approx 0.926|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{\tfrac{\phi^4}{4}} \approx 1.309}}}}

|{{#ifeq:{{{radius|1}}}|1|\sqrt{\tfrac{\phi^4}{8}} \approx 0.926|{{#ifeq:{{{radius}}}|{{radic|2}}|\sqrt{\tfrac{\phi^4}{4}} \approx 1.309}}}}

|-

!style="vertical-align:top;text-align:right;"|Area

|{{#ifeq:{{{radius|1}}}|1|10\left(\tfrac{5\sqrt{3}}{8}\right) \approx 10.825|{{#ifeq:{{{radius}}}|{{radic|2}}|10\left(\tfrac{5\sqrt{3}}{4}\right) \approx 21.651}}}}

|{{#ifeq:{{{radius|1}}}|1|32\left(\sqrt{\tfrac{3}{4}}\right) \approx 27.713|{{#ifeq:{{{radius}}}|{{radic|2}}|32\left(\sqrt{3}\right) \approx 55.425}}}}

|{{#ifeq:{{{radius|1}}}|1|24|{{#ifeq:{{{radius}}}|{{radic|2}}|48}}}}

|{{#ifeq:{{{radius|1}}}|1|96\left(\sqrt{\tfrac{3}{16}}\right) \approx 41.569|{{#ifeq:{{{radius}}}|{{radic|2}}|96\left(\sqrt{\tfrac{3}{4}}\right) \approx 83.138}}}}

|{{#ifeq:{{{radius|1}}}|1|1200\left(\tfrac{\sqrt{3}}{4\phi^2}\right) \approx 198.48|{{#ifeq:{{{radius}}}|{{radic|2}}|1200\left(\tfrac{2\sqrt{3}}{4\phi^2}\right) \approx 396.95}}}}

|{{#ifeq:{{{radius|1}}}|1|720\left(\tfrac{\sqrt{25+10\sqrt{5}}}{8\phi^4}\right) \approx 90.366|{{#ifeq:{{{radius}}}|{{radic|2}}|720\left(\tfrac{\sqrt{25+10\sqrt{5}}}{4\phi^4}\right) \approx 180.73}}}}

|-

!style="vertical-align:top;text-align:right;"|Volume

|{{#ifeq:{{{radius|1}}}|1|5\left(\tfrac{5\sqrt{5}}{24}\right) \approx 2.329|{{#ifeq:{{{radius}}}|{{radic|2}}|5\left(\tfrac{5\sqrt{10}}{12}\right) \approx 6.588}}}}

|{{#ifeq:{{{radius|1}}}|1|16\left(\tfrac{1}{3}\right) \approx 5.333|{{#ifeq:{{{radius}}}|{{radic|2}}|16\left(\tfrac{2\sqrt{2}}{3}\right) \approx 15.085}}}}

|{{#ifeq:{{{radius|1}}}|1|8|{{#ifeq:{{{radius}}}|{{radic|2}}|8\sqrt{8} \approx 22.627}}}}

|{{#ifeq:{{{radius|1}}}|1|24\left(\tfrac{\sqrt{2}}{3}\right) \approx 11.314|{{#ifeq:{{{radius}}}|{{radic|2}}|24\left(\tfrac{4}{3}\right) = 32}}}}

|{{#ifeq:{{{radius|1}}}|1|600\left(\tfrac{\sqrt{2}}{12\phi^3}\right) \approx 16.693|{{#ifeq:{{{radius}}}|{{radic|2}}|600\left(\tfrac{4}{12\phi^3}\right) \approx 47.214}}}}

|{{#ifeq:{{{radius|1}}}|1|120\left(\tfrac{15 + 7\sqrt{5}}{4\phi^6\sqrt{8}}\right) \approx 18.118|{{#ifeq:{{{radius}}}|{{radic|2}}|120\left(\tfrac{15 + 7\sqrt{5}}{4\phi^6}\right) \approx 51.246}}}}

|-

!style="vertical-align:top;text-align:right;"|4-Content

|{{#ifeq:{{{radius|1}}}|1|\tfrac{\sqrt{5}}{24}\left(\tfrac{\sqrt{5}}{2}\right)^4 \approx 0.146|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\sqrt{5}}{24}\left(\sqrt{5}\right)^4 \approx 2.329}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{2}{3} \approx 0.667|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{8}{3} \approx 2.666}}}}

|{{#ifeq:{{{radius|1}}}|1|1|{{#ifeq:{{{radius}}}|{{radic|2}}|4}}}}

|{{#ifeq:{{{radius|1}}}|1|2|{{#ifeq:{{{radius}}}|{{radic|2}}|8}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{\text{Short}\times\text{Vol}}{4} \approx 3.863|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\text{Short}\times\text{Vol}}{4} \approx 15.451}}}}

|{{#ifeq:{{{radius|1}}}|1|\tfrac{\text{Short}\times\text{Vol}}{4} \approx 4.193|{{#ifeq:{{{radius}}}|{{radic|2}}|\tfrac{\text{Short}\times\text{Vol}}{4} \approx 16.770}}}}

|}

Category:Geometry templates