Template:Regular convex 4-polytopes
class="wikitable mw-collapsible {{{collapsestate|mw-collapsed}}}" style="white-space:nowrap;text-align:center;"
!colspan=8|Regular convex 4-polytopes {{#if:{{{radius |
|-
!style="text-align:right;"|Symmetry group
|A4
|colspan=2|B4
|F4
|colspan=2|H4
|-
!style="vertical-align:top;text-align:right;"|Name
|style="vertical-align:top;"|5-cell
Hyper-tetrahedron
5-point
|style="vertical-align:top;"|16-cell
Hyper-octahedron
8-point
|style="vertical-align:top;"|8-cell
Hyper-cube
16-point
|style="vertical-align:top;"|24-cell
24-point
|style="vertical-align:top;"|600-cell
Hyper-icosahedron
120-point
|style="vertical-align:top;"|120-cell
Hyper-dodecahedron
600-point
|-
!style="text-align:right;"|Schläfli symbol
|{3, 3, 3}
|{3, 3, 4}
|{4, 3, 3}
|{3, 4, 3}
|{3, 3, 5}
|{5, 3, 3}
|-
!style="text-align:right;"|Coxeter mirrors
|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|3|node}}
|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|4|node}}
|{{Coxeter–Dynkin diagram|node_1|4|node|3|node|3|node}}
|{{Coxeter–Dynkin diagram|node_1|3|node|4|node|3|node}}
|{{Coxeter–Dynkin diagram|node_1|3|node|3|node|5|node}}
|{{Coxeter–Dynkin diagram|node_1|5|node|3|node|3|node}}
|-
!style="text-align:right;"|Mirror dihedrals
|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|4}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|{{sfrac|𝝅|4}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|{{sfrac|𝝅|3}} {{sfrac|𝝅|4}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|{{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|5}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|{{sfrac|𝝅|5}} {{sfrac|𝝅|3}} {{sfrac|𝝅|3}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}} {{sfrac|𝝅|2}}
|-
!style="vertical-align:top;text-align:right;"|Graph
|-
!style="text-align:right;"|Vertices
|5 tetrahedral
|8 octahedral
|16 tetrahedral
|24 cubical
|120 icosahedral
|600 tetrahedral
|-
!style="vertical-align:top;text-align:right;"|Edges
|10 triangular
|24 square
|32 triangular
|96 triangular
|720 pentagonal
|1200 triangular
|-
!style="vertical-align:top;text-align:right;"|Faces
|10 triangles
|32 triangles
|24 squares
|96 triangles
|1200 triangles
|720 pentagons
|-
!style="vertical-align:top;text-align:right;"|Cells
|5 tetrahedra
|16 tetrahedra
|8 cubes
|24 octahedra
|600 tetrahedra
|120 dodecahedra
|-
!style="vertical-align:top;text-align:right;"|Tori
|2 4-cube
|4 6-octahedron
|20 30-tetrahedron
|12 10-dodecahedron
|-
!style="vertical-align:top;text-align:right;"|Inscribed
|120 in 120-cell
|675 in 120-cell
|2 16-cells
|3 8-cells
|25 24-cells
|10 600-cells
|-
!style="vertical-align:top;text-align:right;"|Great polygons
|
|2 squares x 3
|4 rectangles x 4
|4 hexagons x 4
|12 decagons x 6
|100 irregular hexagons x 4
|-
!style="vertical-align:top;text-align:right;"|Petrie polygons
|1 pentagon x 2
|1 octagon x 3
|2 octagons x 4
|2 dodecagons x 4
|4 30-gons x 6
|20 30-gons x 4
|-
!style="vertical-align:top;text-align:right;"|{{#ifeq:{{{radius|}}}|1|Long radius|{{#ifeq:{{{radius|}}}|{{radic|2}}|Long radius|Long radius}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|-
!style="vertical-align:top;text-align:right;"|Edge length
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|-
!style="vertical-align:top;text-align:right;"|Short radius
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|-
!style="vertical-align:top;text-align:right;"|Area
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|-
!style="vertical-align:top;text-align:right;"|Volume
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|-
!style="vertical-align:top;text-align:right;"|4-Content
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|{{#ifeq:{{{radius|1}}}|1||{{#ifeq:{{{radius}}}|{{radic|2}}|}}}}
|}