Template:Ring theory sidebar
| name = Ring theory sidebar
| class = plainlist
| style = width: 20.5em;
| titlestyle = padding-bottom:0.4em;
| title = Algebraic structure → Ring theory
Ring theory
| caption =
| listtitlestyle = text-align:center;
| expanded = {{{expanded|{{{1|none}}}}}}
| list2name = Basic
| list2title = Basic concepts
| list2style = text-align: left;
| list2 =
Rings
: • Subrings
: • Ideal
: • Quotient ring
:: • Fractional ideal
: • Product of rings
: • Free product of associative algebras
: • Tensor product of algebras
: • Kernel
: • Module
: • Graded ring
: • Involutive ring
:: • Initial ring
:: • Terminal ring
Related structures
: • Field
:: • Finite field
:: • Lie ring
:: • Jordan ring
: • Semiring
:: • Semifield
| list3name = Commutative
| list3title = Commutative algebra
| list3style = text-align: left;
| list3 =
: • Integral domain
:: • GCD domain
:: • Unique factorization domain
:: • Euclidean domain
:: • Field
::: • Finite field
:: • Polynomial ring
: • Ring of integers
: • p-adic integers
: • p-adic numbers
: • Prüfer p-ring
| list4name = Noncommutative
| list4title = Noncommutative algebra
| list4style = text-align: left;
| list4 =
: • Division ring
: • Simple ring
: • Commutator
Noncommutative algebraic geometry
}}
{{documentation}}