Template:Uniform polyhedra db
{{ {{{1}}}|{{{2}}}|
|OhO-name=Octahemioctahedron|
|OhO-name2=|
|OhO-B=Oho|
|OhO-dual=Octahemioctacron
|OhO-dual2=
|OhO-image=Octahemioctahedron.png|
|OhO-vfigimage=Octahemioctahedron vertfig.png|OhO-vfig=3.6.3/2.6|
|OhO-Coxeter={{CDD|label3-2|branch_10ru|split2|node_1}}|
|OhO-Wythoff=3/2 3 | 3|
|OhO-W=68|OhO-U=03|OhO-K=08|OhO-C=37|
|OhO-V=12|OhO-E=24|OhO-F=12|OhO-Fdetail=8{3}+4{6}|
|OhO-chi=0|OhO-group=Oh, [4,3], *432|
|OhO-dimage=Hexahemioctacron.png
|ThH-name=Tetrahemihexahedron|
|ThH-name2=|
|ThH-B=Thah|
|ThH-dual=Tetrahemihexacron
|ThH-dual2=
|ThH-image=Tetrahemihexahedron.png|
|ThH-vfigimage=Tetrahemihexahedron vertfig.svg|
|ThH-vfig=3.4.3/2.4|
|ThH-Coxeter={{CDD|node_1|3x|rat|2x|node|3|node_1}} (double-covering)|
|ThH-Wythoff=3/2 3 | 2 (double-covering)|
|ThH-W=67|ThH-U=04|ThH-K=09|ThH-C=36|
|ThH-V=6|ThH-E=12|ThH-F=7|ThH-Fdetail=4{3}+3{4}|
|ThH-chi=1|ThH-group=Td, [3,3], *332|
|ThH-dimage=Tetrahemihexacron.png
|lCCO-name=Small cubicuboctahedron|
|lCCO-name2=|
|lCCO-B=Socco
|lCCO-dual=Small hexacronic icositetrahedron
|lCCO-dual2=Small sagittal disdodecahedron
|lCCO-image=Small cubicuboctahedron.png|
|lCCO-vfigimage=Small cubicuboctahedron vertfig.png|lCCO-vfig=4.8.3/2.8|
|lCCO-Coxeter={{CDD|label4-3|branch_10ru|split2-43|node_1}}|
|lCCO-Wythoff=3/2 4 | 4
3 4/3 | 4 |
|lCCO-W=69|lCCO-U=13|lCCO-K=18|lCCO-C=38|
|lCCO-V=24|lCCO-E=48|lCCO-F=20|lCCO-Fdetail=8{3}+6{4}+6{8}|
|lCCO-chi=−4|lCCO-group=Oh, [4,3], *432|
|lCCO-dimage=DU13 small hexacronic icositetrahedron.png
|gCCO-name=Great cubicuboctahedron|
|gCCO-name2=|
|gCCO-B=Gocco
|gCCO-dual=Great hexacronic icositetrahedron
|gCCO-dual2=Great lanceal disdodecahedron
|gCCO-image=Great cubicuboctahedron.png|
|gCCO-vfigimage=Great cubicuboctahedron vertfig.png|gCCO-vfig=3.8/3.4.8/3|
|gCCO-Coxeter={{CDD|label4-3|branch_11|split2-43|node}}|
|gCCO-Wythoff=3 4 | 4/3
4 3/2 | 4 |
|gCCO-W=77|gCCO-U=14|gCCO-K=19|gCCO-C=50|
|gCCO-V=24|gCCO-E=48|gCCO-F=20|
|gCCO-Fdetail=8{3}+6{4}+6{8/3}|
|gCCO-chi=−4|gCCO-group=Oh, [4,3], *432|
|gCCO-dimage=DU14 great hexacronic icositetrahedron.png
|ChO-name=Cubohemioctahedron|
|ChO-name2=|
|ChO-B=Cho
|ChO-dual=Hexahemioctacron
|ChO-dual2=
|ChO-image=Cubohemioctahedron.png|
|ChO-vfigimage=Cubohemioctahedron vertfig.png|ChO-vfig=4.6.4/3.6|
|ChO-Coxeter={{CDD|label4-3|branch_01rd|split2-43|node_1}} (double-covering)|
|ChO-Wythoff=4/3 4 | 3 (double-covering)|
|ChO-W=78|ChO-U=15|ChO-K=20|ChO-C=51|
|ChO-V=12|ChO-E=24|ChO-F=10|ChO-Fdetail=6{4}+4{6}|
|ChO-chi=−2|ChO-group=Oh, [4,3], *432|
|ChO-dimage=Hexahemioctacron.png
|ctCO-name=Cubitruncated cuboctahedron|
|ctCO-name2=|
|ctCO-B=Cotco
|ctCO-dual=Tetradyakis hexahedron
|ctCO-dual2=Trisdyakis octahedron
|ctCO-image=Cubitruncated cuboctahedron.png|
|ctCO-vfigimage=Cubitruncated cuboctahedron vertfig.png|ctCO-vfig=6.8.8/3|
|ctCO-altname1=Cuboctatruncated cuboctahedron|
|ctCO-Coxeter={{CDD|label4-3|branch_11|split2-43|node_1}}|
|ctCO-Wythoff=3 4 4/3 | |
|ctCO-W=79|ctCO-U=16|ctCO-K=21|ctCO-C=52|
|ctCO-V=48|ctCO-E=72|ctCO-F=20|ctCO-Fdetail=8{6}+6{8}+6{8/3}|
|ctCO-chi=−4|ctCO-group=Oh, [4,3], *432|
|ctCO-dimage=DU16 tetradyakishexahedron.png
|ugrCO-name=Nonconvex great rhombicuboctahedron|
|ugrCO-name2=Great rhombicuboctahedron|
|ugrCO-B=Querco
|ugrCO-dual=Great deltoidal icositetrahedron
|ugrCO-dual2=Great sagittal disdodecahedron
|ugrCO-image=Uniform great rhombicuboctahedron.png|
|ugrCO-vfigimage=Uniform great rhombicuboctahedron vertfig.png|ugrCO-vfig=4.4.4.3/2|
|ugrCO-altname1=Quasirhombicuboctahedron|
|ugrCO-Coxeter={{CDD|node_1|4|rat|3x|node|3|node_1}}|
|ugrCO-Wythoff=3/2 4 | 2
3 4/3 | 2 |
|ugrCO-W=85|ugrCO-U=17|ugrCO-K=22|ugrCO-C=59|
|ugrCO-V=24|ugrCO-E=48|ugrCO-F=26|ugrCO-Fdetail=8{3}+(6+12){4}|
|ugrCO-chi=2|ugrCO-group=Oh, [4,3], *432|
|ugrCO-dimage=DU17 great strombic icositetrahedron.png
|lrH-name=Small rhombihexahedron
|lrH-name2=Small rhombicube
|lrH-B=Sroh
|lrH-dual=Small rhombihexacron
|lrH-dual2=Small dipteral disdodecahedron
|lrH-image=Small rhombihexahedron.png
|lrH-vfigimage=Small rhombihexahedron vertfig.png|lrH-vfig=4.8.4/3.8/7
|lrH-Coxeter={{CDD|node_1|4|node_1|3x|rat|2x|node_1}} (with extra double-covered triangles)
{{CDD|node_1|4|node_1|4|rat|2x|node_1}} (with extra double-covered squares)
|lrH-Wythoff=2 4 (3/2 4/2) |
|lrH-W=86|lrH-U=18|lrH-K=23|lrH-C=60
|lrH-V=24|lrH-E=48|lrH-F=18|lrH-Fdetail=12{4}+6{8}
|lrH-chi=−6|lrH-group=Oh, [4,3], *432
|lrH-dimage=DU18 small rhombihexacron.png
|stH-name=Stellated truncated hexahedron|
|stH-name2=Stellatruncated cube|
|stH-B=Quith|
|stH-dual=Great triakis octahedron
|stH-dual2=
|stH-image=Stellated truncated hexahedron.png|
|stH-vfigimage=Stellated truncated hexahedron vertfig.png|stH-vfig=3.8/3.8/3|
|stH-altname1=Quasitruncated hexahedron|
|stH-altname2=stellatruncated cube|
|stH-Coxeter={{CDD|node_1|4|rat|3x|node_1|3|node}}
|stH-Wythoff=2 3 | 4/3
2 3/2 | 4/3 |
|stH-W=92|stH-U=19|stH-K=24|stH-C=66|
|stH-V=24|stH-E=36|stH-F=14|stH-Fdetail=8{3}+6{8/3}|
|stH-chi=2|stH-group=Oh, [4,3], *432|
|stH-dimage=DU19 great triakisoctahedron.png
|gtCO-name=Great truncated cuboctahedron|
|gtCO-name2=Stellatruncated cuboctahedron|
|gtCO-B=Quitco
|gtCO-dual=Great disdyakis dodecahedron
|gtCO-dual2=
|gtCO-image=Great truncated cuboctahedron.png|
|gtCO-vfigimage=Great truncated cuboctahedron vertfig.png|gtCO-vfig=4.6/5.8/3|
|gtCO-altname1=Quasitruncated cuboctahedron|
|gtCO-Coxeter={{CDD|node_1|4|rat|3x|node_1|3|node_1}}
|gtCO-Wythoff=2 3 4/3 | |
|gtCO-W=93|gtCO-U=20|gtCO-K=25|gtCO-C=67|
|gtCO-V=48|gtCO-E=72|gtCO-F=26|gtCO-Fdetail=12{4}+8{6}+6{8/3}|
|gtCO-chi=2|gtCO-group=Oh, [4,3], *432|
|gtCO-dimage=DU20 great disdyakisdodecahedron.png
|grH-name=Great rhombihexahedron|
|grH-name2=Great rhombicube|
|grH-B=Groh
|grH-dual=Great rhombihexacron
|grH-dual2=Great dipteral disdodecahedron
|grH-image=Great rhombihexahedron.png|
|grH-vfigimage=Great rhombihexahedron vertfig.png|grH-vfig=4.8/3.4/3.8/5|
|grH-Coxeter={{CDD|node_1|4|rat|3x|node_1|3x|rat|2x|node_1}} (with extra double-covered triangles)
{{CDD|node_1|4|rat|3x|node_1|4|rat|2x|node_1}} (with extra double-covered squares)
|grH-Wythoff=2 4/3 (3/2 4/2) | |
|grH-W=103|grH-U=21|grH-K=26|grH-C=82|
|grH-V=24|grH-E=48|grH-F=18|grH-Fdetail=12{4}+6{8/3}|
|grH-chi=−6|grH-group=Oh, [4,3], *432|
|grH-dimage=DU21 great rhombihexacron.png
|ldID-name=Small ditrigonal icosidodecahedron|
|ldID-name2=|
|ldID-B=Sidtid
|ldID-dual=Small triambic icosahedron
|ldID-dual2=
|ldID-image=Small ditrigonal icosidodecahedron.png|
|ldID-vfigimage=Small ditrigonal icosidodecahedron vertfig.png|ldID-vfig=(3.5/2)3|
|ldID-Coxeter={{CDD|label5-2|branch_10ru|split2|node}}
|ldID-Wythoff=3 | 5/2 3|
|ldID-W=70|ldID-U=30|ldID-K=35|ldID-C=39|
|ldID-V=20|ldID-E=60|ldID-F=32|ldID-Fdetail=20{3}+12{5/2}|
|ldID-chi=−8|ldID-group=Ih, [5,3], *532|
|ldID-dimage=DU30 small triambic icosahedron.png
|lIID-name=Small icosicosidodecahedron|
|lIID-name2=Small icosified icosidodecahedron|
|lIID-B=Siid
|lIID-dual=Small icosacronic hexecontahedron
|lIID-dual2=Small lanceal trisicosahedron
|lIID-image=Small icosicosidodecahedron.png|
|lIID-vfigimage=Small icosicosidodecahedron vertfig.png|
|lIID-vfig=6.5/2.6.3|
|lIID-Coxeter={{CDD|label5-2|branch_10ru|split2|node_1}}
|lIID-Wythoff=5/2 3 | 3|
|lIID-W=71|lIID-U=31|lIID-K=36|lIID-C=40|
|lIID-V=60|lIID-E=120|lIID-F=52|
|lIID-Fdetail=20{3}+12{5/2}+20{6}|
|lIID-chi=−8|lIID-group=Ih, [5,3], *532|
|lIID-dimage=DU31 small icosacronic hexecontahedron.png
|Seside-name=Small snub icosicosidodecahedron|
|Seside-name2=Snub disicosidodecahedron|
|Seside-dual=Small hexagonal hexecontahedron
|Seside-dual2=
|Seside-image=Small snub icosicosidodecahedron.png|
|Seside-vfigimage=Small snub icosicosidodecahedron vertfig.png|
|Seside-solid=S+|
|Seside-Coxeter={{CDD|label5-2|branch_hh|split2|node_h}}
|Seside-Wythoff=| 5/2 3 3|
|Seside-vfig=35.5/2|
|Seside-B=Seside|Seside-group=Ih, [5,3], *532|
|Seside-W=110|Seside-U=32|Seside-K=37|Seside-C=41|
|Seside-V=60|Seside-E=180|Seside-F=112|Seside-chi=−8|Seside-Fdetail=(40+60){3}+12{5/2}|
|Seside-dimage=DU32 small hexagonal hexecontahedron.png
|lDID-name=Small dodecicosidodecahedron|
|lDID-name2=Small dodekicosidodecahedron|
|lDID-B=Saddid
|lDID-dual=Small dodecacronic hexecontahedron
|lDID-dual2=Small sagittal ditriacontadron
|lDID-image=Small dodecicosidodecahedron.png|
|lDID-vfigimage=Small dodecicosidodecahedron vertfig.png|lDID-vfig=5.10.3/2.10|
|lDID-Coxeter={{CDD|label5|branch_11|split2-5t|node}}
|lDID-Wythoff=3/2 5 | 5
3 5/4 | 5|
|lDID-W=72|lDID-U=33|lDID-K=38|lDID-C=42|
|lDID-V=60|lDID-E=120|lDID-F=44|lDID-Fdetail=20{3}+12{5}+12{10}|
|lDID-chi=−16|lDID-group=Ih, [5,3], *532|
|lDID-dimage=DU33 small dodecacronic hexecontahedron.png
|DD-name=Dodecadodecahedron|
|DD-name2=|
|DD-B=Did
|DD-dual=Medial rhombic triacontahedron
|DD-dual2=
|DD-image=Dodecadodecahedron.png|
|DD-vfigimage=Dodecadodecahedron vertfig.png|DD-vfig=5.5/2.5.5/2|
|DD-Coxeter={{CDD|node|5|node_1|5|rat|2x|node}}
|DD-Wythoff=2 | 5 5/2
2 | 5 5/3
2 | 5/2 5/4
2 | 5/3 5/4|
|DD-W=73|DD-U=36|DD-K=41|DD-C=45|
|DD-V=30|DD-E=60|DD-F=24|DD-Fdetail=12{5}+12{5/2}|
|DD-chi=−6|DD-group=Ih, [5,3], *532|
|DD-dimage=DU36 medial rhombic triacontahedron.png
|tgD-name=Truncated great dodecahedron|
|tgD-name2=Great truncated dodecahedron|
|tgD-B=Tigid|
|tgD-dual=Small stellapentakis dodecahedron
|tgD-dual2=Small astropentakis dodecahedron
|tgD-image=Great truncated dodecahedron.png|
|tgD-vfigimage=Truncated great dodecahedron vertfig.png|tgD-vfig=10.10.5/2|
|tgD-Coxeter={{CDD|node_1|5|node_1|5|rat|2x|node}}
|tgD-Wythoff=2 5/2 | 5
2 5/3 | 5|
|tgD-W=75|tgD-U=37|tgD-K=42|tgD-C=47|
|tgD-V=60|tgD-E=90|tgD-F=24|tgD-Fdetail=12{5/2}+12{10}|
|tgD-chi=−6|tgD-group=Ih, [5,3], *532|
|tgD-dimage=DU37 small stellapentakisdodecahedron.png
|rDD-name=Rhombidodecadodecahedron|
|rDD-name2=|
|rDD-B=Raded
|rDD-dual=Medial deltoidal hexecontahedron
|rDD-dual2=Midly lanceal ditriacontahedron
|rDD-image=Rhombidodecadodecahedron.png|
|rDD-vfigimage=Rhombidodecadodecahedron vertfig.png|
|rDD-vfig=4.5/2.4.5|
|rDD-Coxeter={{CDD|node_1|5|node|5|rat|2x|node_1}}
|rDD-Wythoff=5/2 5 | 2|
|rDD-W=76|rDD-U=38|rDD-K=43|rDD-C=48|
|rDD-V=60|rDD-E=120|rDD-F=54|
|rDD-Fdetail=30{4}+12{5}+12{5/2}|
|rDD-chi=−6|rDD-group=Ih, [5,3], *532|
|rDD-dimage=DU38 medial trapezoidal hexecontahedron.png
|lrD-name=Small rhombidodecahedron|
|lrD-name2=|
|lrD-B=Sird
|lrD-dual=Small rhombidodecacron
|lrD-dual2=Small dipteral ditriacontahedron
|lrD-image=Small rhombidodecahedron.png|
|lrD-vfigimage=Small rhombidodecahedron vertfig.png|lrD-vfig=4.10.4/3.10/9|
|lrD-Coxeter={{CDD|node_1|5|node_1|3x|rat|2x|node_1}} (with extra double-covered triangles)
{{CDD|node_1|5|node_1|5|rat|2x|node_1}} (with extra double-covered pentagons)
|lrD-Wythoff=2 5 (3/2 5/2) | |
|lrD-W=74|lrD-U=39|lrD-K=44|lrD-C=46|
|lrD-V=60|lrD-E=120|lrD-F=42|lrD-Fdetail=30{4}+12{10}|
|lrD-chi=−18|lrD-group=Ih, [5,3], *532|
|lrD-dimage=DU39 small rhombidodecacron.png
|Siddid-name=Snub dodecadodecahedron|
|Siddid-name2=|
|Siddid-B=Siddid
|Siddid-dual=Medial pentagonal hexecontahedron
|Siddid-dual2=Midly petaloid ditriacontahedron
|Siddid-image=Snub dodecadodecahedron.png|
|Siddid-vfigimage=Snub dodecadodecahedron vertfig.png|
|Siddid-solid=S+|
|Siddid-Coxeter={{CDD|node_h|5|node_h|5|rat|2x|node_h}}
|Siddid-Wythoff=| 2 5/2 5|
|Siddid-vfig=3.3.5/2.3.5|
|Siddid-group=I, [5,3]+, 532|
|Siddid-W=111|Siddid-U=40|Siddid-K=45|Siddid-C=49|
|Siddid-V=60|Siddid-E=150|Siddid-F=84|Siddid-chi=−6|Siddid-Fdetail=60{3}+12{5}+12{5/2}|
|Siddid-dimage=DU40 medial pentagonal hexecontahedron.png
|dDD-name=Ditrigonal dodecadodecahedron|
|dDD-name2=|
|dDD-B=Ditdid
|dDD-dual=Medial triambic icosahedron
|dDD-dual2=
|dDD-image=Ditrigonal dodecadodecahedron.png|
|dDD-vfigimage=Ditrigonal dodecadodecahedron vertfig.png|dDD-vfig=(5.5/3)3|
|dDD-Coxeter={{CDD|label5-3|branch_10ru|split2-53|node}}
|dDD-Wythoff=3 | 5/3 5
3/2 | 5 5/2
3/2 | 5/3 5/4
3 | 5/2 5/4|
|dDD-W=80|dDD-U=41|dDD-K=46|dDD-C=53|
|dDD-V=20|dDD-E=60|dDD-F=24|dDD-Fdetail=12{5}+12{5/2}|
|dDD-chi=−16|dDD-group=Ih, [5,3], *532|
|dDD-dimage=DU41 medial triambic icosahedron.png
|gdDID-name=Great ditrigonal dodecicosidodecahedron|
|gdDID-name2=Great dodekified icosidodecahedron|
|gdDID-B=Gidditdid
|gdDID-dual=Great ditrigonal dodecacronic hexecontahedron
|gdDID-dual2=Great lanceal trisicosahedron
|gdDID-image=Great ditrigonal dodecicosidodecahedron.png|
|gdDID-vfigimage=Great ditrigonal dodecicosidodecahedron vertfig.png|
|gdDID-vfig=3.10/3.5.10/3|
|gdDID-Coxeter={{CDD|label5-3|branch_11|split2-53|node}}
|gdDID-Wythoff=3 5 | 5/3
5/4 3/2 | 5/3|
|gdDID-W=81|gdDID-U=42|gdDID-K=47|gdDID-C=54|
|gdDID-V=60|gdDID-E=120|gdDID-F=44|
|gdDID-Fdetail=20{3}+12{5}+12{10/3}|
|gdDID-chi=−16|gdDID-group=Ih, [5,3], *532|
|gdDID-dimage=DU42 great ditrigonal dodecacronic hexecontahedron.png
|ldDID-name=Small ditrigonal dodecicosidodecahedron|
|ldDID-name2=Small dodekified icosidodecahedron|
|ldDID-B=Sidditdid
|ldDID-dual=Small ditrigonal dodecacronic hexecontahedron
|ldDID-dual2=Small sagittal trisicosahedron
|ldDID-image=Small ditrigonal dodecicosidodecahedron.png|
|ldDID-vfigimage=Small ditrigonal dodecicosidodecahedron vertfig.png|ldDID-vfig=3.10.5/3.10|
|ldDID-Coxeter={{CDD|label5-3|branch_10ru|split2-53|node_1}}
|ldDID-Wythoff=5/3 3 | 5
5/2 3/2 | 5|
|ldDID-W=82|ldDID-U=43|ldDID-K=48|ldDID-C=55|
|ldDID-V=60|ldDID-E=120|ldDID-F=44|ldDID-Fdetail=20{3}+12{5/2}+12{10}|
|ldDID-chi=−16|ldDID-group=Ih, [5,3], *532|
|ldDID-dimage=DU43 Small ditrigonal dodecacronic hexecontahedron.png
|IDD-name=Icosidodecadodecahedron|
|IDD-name2=Icosified dodecadodecahedron|
|IDD-B=Ided
|IDD-dual=Medial icosacronic hexecontahedron
|IDD-dual2=Midly sagittal ditriacontahedron
|IDD-image=Icosidodecadodecahedron.png|
|IDD-vfigimage=Icosidodecadodecahedron vertfig.png|IDD-vfig=5.6.5/3.6|
|IDD-Coxeter={{CDD|label5-3|branch_01rd|split2-53|node_1}}
|IDD-Wythoff=5/3 5 | 3
5/2 5/4 | 3|
|IDD-W=83|IDD-U=44|IDD-K=49|IDD-C=56|
|IDD-V=60|IDD-E=120|IDD-F=44|IDD-Fdetail=12{5}+12{5/2}+20{6}|
|IDD-chi=−16|IDD-group=Ih, [5,3], *532|
|IDD-dimage=DU44 medial icosacronic hexecontahedron.png
|itDD-name=Icositruncated dodecadodecahedron|
|itDD-name2=|
|itDD-B=Idtid
|itDD-dual=Tridyakis icosahedron
|itDD-dual2=
|itDD-image=Icositruncated dodecadodecahedron.png|
|itDD-vfigimage=Icositruncated dodecadodecahedron vertfig.png|itDD-vfig=6.10.10/3|
|itDD-altname1=Icosidodecatruncated icosidodecahedron|
|itDD-Coxeter={{CDD|label5-3|branch_11|split2-53|node_1}}
|itDD-Wythoff=3 5 5/3 | |
|itDD-W=84|itDD-U=45|itDD-K=50|itDD-C=57|
|itDD-V=120|itDD-E=180|itDD-F=44|itDD-Fdetail=20{6}+12{10}+12{10/3}|
|itDD-chi=−16|itDD-group=Ih, [5,3], *532|
|itDD-dimage=DU45 tridyakisicosahedron.png
|Sided-name=Snub icosidodecadodecahedron|
|Sided-name2=|
|Sided-B=Sided
|Sided-dual=Medial hexagonal hexecontahedron
|Sided-dual2=Petaloidal trisicosahedron
|Sided-image=Snub icosidodecadodecahedron.png|
|Sided-vfigimage=Snub icosidodecadodecahedron vertfig.png|
|Sided-solid=S+|
|Sided-Coxeter={{CDD|label5-3|branch_hh|split2-53|node_h}}
|Sided-Wythoff=| 5/3 3 5|
|Sided-vfig=3.3.3.5.3.5/3|
|Sided-group=I, [5,3]+, 532
|Sided-W=112|Sided-U=46|Sided-K=51|Sided-C=58|
|Sided-V=60|Sided-E=180|Sided-F=104|Sided-chi=−16|Sided-Fdetail=(20+60){3}+12{5}+12{5/2}|
|Sided-dimage=DU46 medial hexagonal hexecontahedron.png
|gdID-name=Great ditrigonal icosidodecahedron|
|gdID-name2=|
|gdID-B=Gidtid
|gdID-dual=Great triambic icosahedron
|gdID-dual2=
|gdID-image=Great ditrigonal icosidodecahedron.png|
|gdID-vfigimage=Great ditrigonal icosidodecahedron vertfig.png|gdID-vfig=((3.5)3)/2|
|gdID-Coxeter={{CDD|label5|branch_10ru|split2-t3|node}}
|gdID-Wythoff=3/2 | 3 5
3 | 3/2 5
3 | 3 5/4
3/2 | 3/2 5/4|
|gdID-W=87|gdID-U=47|gdID-K=52|gdID-C=61|
|gdID-V=20|gdID-E=60|gdID-F=32|gdID-Fdetail=20{3}+12{5}|
|gdID-chi=−8|gdID-group=Ih, [5,3], *532|
|gdID-dimage=DU47 great triambic icosahedron.png
|gIID-name=Great icosicosidodecahedron|
|gIID-name2=Great icosified icosidodecahedron|
|gIID-B=Giid
|gIID-dual=Great icosacronic hexecontahedron
|gIID-dual2=Great sagittal trisicosahedron
|gIID-image=Great icosicosidodecahedron.png|
|gIID-vfigimage=Great icosicosidodecahedron vertfig.png|gIID-vfig=5.6.3/2.6|
|gIID-Coxeter={{CDD|label5|branch_01rd|split2-t3|node_1}}
|gIID-Wythoff=3/2 5 | 3
3 5/4 | 3|
|gIID-W=88|gIID-U=48|gIID-K=53|gIID-C=62|
|gIID-V=60|gIID-E=120|gIID-F=52|gIID-Fdetail=20{3}+12{5}+20{6}|
|gIID-chi=−8|gIID-group=Ih, [5,3], *532|
|gIID-dimage=DU48 great icosacronic hexecontahedron.png
|lIhD-name=Small icosihemidodecahedron|
|lIhD-name2=|
|lIhD-B=Seihid
|lIhD-dual=Small icosihemidodecacron
|lIhD-dual2=
|lIhD-image=Small icosihemidodecahedron.png|
|lIhD-vfigimage=Small icosihemidodecahedron vertfig.png|lIhD-vfig=3.10.3/2.10|
|lIhD-Coxeter={{CDD|label5|branch_11|split2-t3|node}} (double covering)
|lIhD-Wythoff=3/2 3 | 5 (double covering)|
|lIhD-W=89|lIhD-U=49|lIhD-K=54|lIhD-C=63|
|lIhD-V=30|lIhD-E=60|lIhD-F=26|lIhD-Fdetail=20{3}+6{10}|
|lIhD-chi=−4|lIhD-group=Ih, [5,3], *532|
|lIhD-dimage=Small dodecahemidodecacron.png
|lDI-name=Small dodecicosahedron|
|lDI-name2=Small dodekicosahedron|
|lDI-B=Siddy
|lDI-dual=Small dodecicosacron
|lDI-dual2=Small dipteral trisicosahedron
|lDI-image=Small dodecicosahedron.png|
|lDI-vfigimage=Small dodecicosahedron vertfig.png|lDI-vfig=6.10.6/5.10/9|
|lDI-Coxeter={{CDD|label5|branch_11|split2-t3|node_1}} (with extra double-covered triangles)
{{CDD|label5-4|branch_11|split2-53|node_1}} (with extra double-covered pentagrams)
|lDI-Wythoff=3 5 (3/2 5/4) | |
|lDI-W=90|lDI-U=50|lDI-K=55|lDI-C=64|
|lDI-V=60|lDI-E=120|lDI-F=32|lDI-Fdetail=20{6}+12{10}|
|lDI-chi=−28|lDI-group=Ih, [5,3], *532|
|lDI-dimage=DU50 small dodecicosacron.png
|lDhD-name=Small dodecahemidodecahedron|
|lDhD-name2=|
|lDhD-B=Sidhid
|lDhD-dual=Small dodecahemidodecacron
|lDhD-dual2=
|lDhD-image=Small dodecahemidodecahedron.png|
|lDhD-vfigimage=Small dodecahemidodecahedron vertfig.png|lDhD-vfig=5.10.5/4.10|
|lDhD-Coxeter={{CDD|label5-4|branch_10ru|split2-55|node_1}} (double covering)
|lDhD-Wythoff=5/4 5 | 5 (double covering)|
|lDhD-W=91|lDhD-U=51|lDhD-K=56|lDhD-C=65|
|lDhD-V=30|lDhD-E=60|lDhD-F=18|lDhD-Fdetail=12{5}+6{10}|
|lDhD-chi=−12|lDhD-group=Ih, [5,3], *532|
|lDhD-dimage=Small dodecahemidodecacron.png
|gID-name=Great icosidodecahedron|
|gID-name2=|
|gID-B=Gid
|gID-dual=Great rhombic triacontahedron
|gID-dual2=
|gID-image=Great icosidodecahedron.png|
|gID-vfigimage=Great icosidodecahedron vertfig.png|gID-vfig=3.5/2.3.5/2|
|gID-Coxeter={{CDD|node|5|rat|2x|node_1|3|node}}
|gID-Wythoff=2 | 3 5/2
2 | 3 5/3
2 | 3/2 5/2
2 | 3/2 5/3|
|gID-W=94|gID-U=54|gID-K=59|gID-C=70|
|gID-V=30|gID-E=60|gID-F=32|gID-Fdetail=20{3}+12{5/2}|
|gID-chi=2|gID-group=Ih, [5,3], *532|
|gID-dimage=DU54 great rhombic triacontahedron.png
|gtI-name=Truncated great icosahedron|
|gtI-name2=Great truncatedicosahedron|
|gtI-B=Tiggy|
|gtI-dual=Great stellapentakis dodecahedron
|gtI-dual2=Great astroapentakis dodecahedron
|gtI-image=Great truncated icosahedron.png|
|gtI-vfigimage=Great truncated icosahedron vertfig.png|gtI-vfig=6.6.5/2|
|gtI-Coxeter={{CDD|node|5|rat|2x|node_1|3|node_1}}
|gtI-Wythoff=2 5/2 | 3
2 5/3 | 3|
|gtI-W=95|gtI-U=55|gtI-K=60|gtI-C=71|
|gtI-V=60|gtI-E=90|gtI-F=32|gtI-Fdetail=12{5/2}+20{6}|
|gtI-chi=2|gtI-group=Ih, [5,3], *532|
|gtI-dimage=DU55 great stellapentakisdodecahedron.png
|rI-name=Rhombicosahedron|
|rI-name2=|
|rI-B=Ri
|rI-dual=Rhombicosacron
|rI-dual2=Midly dipteral ditriacontagedron
|rI-image=Rhombicosahedron.png|
|rI-vfigimage=Rhombicosahedron vertfig.png|rI-vfig=4.6.4/3.6/5|
|rI-Coxeter={{CDD|node_1|5|rat|4|node_1|3|node_1}} (with extra double-covered pentagrams)
{{CDD|node_1|5|rat|2x|node_1|3|node_1}} (with extra double-covered pentagons)
|rI-Wythoff=2 3 (5/4 5/2) ||
|rI-W=96|rI-U=56|rI-K=61|rI-C=72|
|rI-V=60|rI-E=120|rI-F=50|rI-Fdetail=30{4}+20{6}|
|rI-chi=−10|rI-group=Ih, [5,3], *532|
|rI-dimage=DU56 rhombicosacron.png
|Gosid-name=Great snub icosidodecahedron|
|Gosid-name2=Great vertisnub icosadodecahedron|
|Gosid-B=Gosid
|Gosid-dual=Great pentagonal hexecontahedron
|Gosid-dual2=Great dentoid ditriacontahedron
|Gosid-image=Great snub icosidodecahedron.png|
|Gosid-vfigimage=Great snub icosidodecahedron vertfig.png|
|Gosid-solid=S+|
|Gosid-Coxeter={{CDD|node_h|5|rat|2x|node_h|3|node_h}}
|Gosid-Wythoff=| 2 5/2 3|
|Gosid-vfig=34.5/2|
|Gosid-group=I, [5,3]+, 532
|Gosid-W=113|Gosid-U=57|Gosid-K=62|Gosid-C=88|
|Gosid-V=60|Gosid-E=150|Gosid-F=92|Gosid-chi=2|Gosid-Fdetail=(20+60){3}+12{5/2}|
|Gosid-dimage=DU57 great pentagonal hexecontahedron (2).png
|lstD-name=Small stellated truncated dodecahedron|
|lstD-name2=Small stellatruncated dodecahedron|
|lstD-B=Quit Sissid
|lstD-dual=Great pentakis dodecahedron
|lstD-dual2=
|lstD-image=Small stellated truncated dodecahedron.png|
|lstD-vfigimage=Small stellated truncated dodecahedron vertfig.png|lstD-vfig=5.10/3.10/3|
|lstD-altname1=Quasitruncated small stellated dodecahedron|
|lstD-altname2=Small stellatruncated dodecahedron|
|lstD-Coxeter={{CDD|node_1|5|rat|3x|node_1|5|node}}
|lstD-Wythoff=2 5 | 5/3
2 5/4 | 5/3|
|lstD-W=97|lstD-U=58|lstD-K=63|lstD-C=74|
|lstD-V=60|lstD-E=90|lstD-F=24|lstD-Fdetail=12{5}+12{10/3}|
|lstD-chi=−6|lstD-group=Ih, [5,3], *532|
|lstD-dimage=DU58 great pentakisdodecahedron.png
|tDD-name=Truncated dodecadodecahedron|
|tDD-name2=Stellatruncated dodecadodecahedron|
|tDD-B=Quitdid
|tDD-dual=Medial disdyakis triacontahedron
|tDD-dual2=Midly disdyakis triacontahedron
|tDD-image=Truncated dodecadodecahedron.png|
|tDD-vfigimage=Truncated dodecadodecahedron vertfig.png|tDD-vfig=4.10/9.10/3|
|tDD-altname1=Quasitruncated dodecadodecahedron|
|tDD-Coxeter={{CDD|node_1|5|rat|3x|node_1|5|node_1}}
|tDD-Wythoff=2 5 5/3 | |
|tDD-W=98|tDD-U=59|tDD-K=64|tDD-C=75|
|tDD-V=120|tDD-E=180|tDD-F=54|tDD-Fdetail=30{4}+12{10}+12{10/3}|
|tDD-chi=−6|tDD-group=Ih, [5,3], *532|
|tDD-dimage=DU59 medial disdyakistriacontahedron.png
|Isdid-name=Inverted snub dodecadodecahedron|
|Isdid-name2=Vertisnub dodecadodecahedron|
|Isdid-B=Isdid
|Isdid-dual=Medial inverted pentagonal hexecontahedron
|Isdid-dual2=Medly dentoid ditriacontahedron
|Isdid-image=Inverted snub dodecadodecahedron.png|
|Isdid-vfigimage=Inverted snub dodecadodecahedron vertfig.png|Isdid-vfig=3.3.5.3.5/3|
|Isdid-Coxeter={{CDD|node_h|5|rat|3x|node_h|5|node_h}}
|Isdid-Wythoff=| 5/3 2 5|
|Isdid-group=I, [5,3]+, 532
|Isdid-W=114|Isdid-U=60|Isdid-K=65|Isdid-C=76|
|Isdid-V=60|Isdid-E=150|Isdid-F=84|Isdid-chi=−6|Isdid-Fdetail=60{3}+12{5}+12{5/2}|
|Isdid-dimage=DU60 medial inverted pentagonal hexecontahedron.png
|gDID-name=Great dodecicosidodecahedron|
|gDID-name2=Great dodekicosidodecahedron|
|gDID-B=Gaddid
|gDID-dual=Great dodecacronic hexecontahedron
|gDID-dual2=Great lanceal ditriacontahedron
|gDID-image=Great dodecicosidodecahedron.png|
|gDID-vfigimage=Great dodecicosidodecahedron vertfig.png|gDID-vfig=3.10/3.5/2.10/7|
|gDID-Coxeter={{CDD|label5-3|branch_11|split2-p3|node}}
|gDID-Wythoff=5/2 3 | 5/3
5/3 3/2 | 5/3|
|gDID-W=99|gDID-U=61|gDID-K=66|gDID-C=77|
|gDID-V=60|gDID-E=120|gDID-F=44|
|gDID-Fdetail=20{3}+12{5/2}+12{10/3}|
|gDID-chi=−16|gDID-group=Ih, [5,3], *532|
|gDID-dimage=DU61 great dodecacronic hexecontahedron.png
|lDhI-name=Small dodecahemicosahedron|
|lDhI-name2=Great dodecahemicosahedron|
|lDhI-B=Sidhei
|lDhI-dual=Small dodecahemicosacron
|lDhI-dual2=
|lDhI-image=Small dodecahemicosahedron.png|
|lDhI-vfigimage=Small dodecahemicosahedron vertfig.png|lDhI-vfig=6.5/2.6.5/3|
|lDhI-Coxeter={{CDD|label5-3|branch_01rd|split2-p3|node_1}}
|lDhI-Wythoff=5/3 5/2 | 3 (double covering)|
|lDhI-W=100|lDhI-U=62|lDhI-K=67|lDhI-C=78|
|lDhI-V=30|lDhI-E=60|lDhI-F=22|lDhI-Fdetail=12{5/2}+10{6}|
|lDhI-chi=−8|lDhI-group=Ih, [5,3], *532|
|lDhI-dimage=Small dodecahemicosacron.png
|gDI-name=Great dodecicosahedron|
|gDI-name2=Great dodekicosahedron|
|gDI-B=Giddy
|gDI-dual=Great dodecicosacron
|gDI-dual2=Great dipteral trisicosahedron
|gDI-image=Great dodecicosahedron.png|
|gDI-vfigimage=Great dodecicosahedron vertfig.png|gDI-vfig=6.10/3.6/5.10/7|
|gDI-Coxeter={{CDD|label5-3|branch_11|split2-t3|node_1}} (with extra double-covered triangles)
{{CDD|label5-3|branch_11|split2-p3|node_1}} (with extra double-covered pentagons)
|gDI-Wythoff=3 5/3 (3/2 5/2) | |
|gDI-W=101|gDI-U=63|gDI-K=68|gDI-C=79|
|gDI-V=60|gDI-E=120|gDI-F=32|gDI-Fdetail=20{6}+12{10/3}|
|gDI-chi=−28|gDI-group=Ih, [5,3], *532|
|gDI-dimage=DU63 great dodecicosacron.png
|Gisdid-name=Great snub dodecicosidodecahedron|
|Gisdid-name2=Great snub dodekicosidodecahedron|
|Gisdid-dual=Great hexagonal hexecontahedron
|Gisdid-dual2=
|Gisdid-image=Great snub dodecicosidodecahedron.png|
|Gisdid-vfigimage=Great snub dodecicosidodecahedron vertfig.png|Gisdid-vfig=3.3.3.5/2.3.5/3|
|Gisdid-Coxeter={{CDD|label5-3|branch_hh|split2-p3|node_h}}
|Gisdid-Wythoff=| 5/3 5/2 3|
|Gisdid-B=Gisdid|Gisdid-group=I, [5,3]+, 532
|Gisdid-W=115|Gisdid-U=64|Gisdid-K=69|Gisdid-C=80|
|Gisdid-V=60|Gisdid-E=180|Gisdid-F=104|Gisdid-chi=−16|
|Gisdid-Fdetail=(20+60){3}+(12+12){5/2}|
|Gisdid-dimage=DU64 great hexagonal hexecontahedron.png
|gDhI-name=Great dodecahemicosahedron|
|gDhI-name2=Small dodecahemiicosahedron|
|gDhI-B=Gidhei
|gDhI-dual=Great dodecahemicosacron
|gDhI-dual2=
|gDhI-image=Great dodecahemicosahedron.png|
|gDhI-vfigimage=Great dodecahemicosahedron vertfig.png|gDhI-vfig=5.6.5/4.6|
|gDhI-Coxeter={{CDD|label5-4|branch_01rd|split2-53|node_1}} (double covering)
|gDhI-Wythoff=5/4 5 | 3 (double covering)|
|gDhI-W=102|gDhI-U=65|gDhI-K=70|gDhI-C=81|
|gDhI-V=30|gDhI-E=60|gDhI-F=22|gDhI-Fdetail=12{5}+10{6}|
|gDhI-chi=−8|gDhI-group=Ih, [5,3], *532|
|gDhI-dimage=Small dodecahemicosacron.png
|gstD-name=Great stellated truncated dodecahedron|
|gstD-name2=Great stellatruncated dodecahedron|
|gstD-B=Quit Gissid
|gstD-dual=Great triakis icosahedron
|gstD-dual2=
|gstD-image=Great stellated truncated dodecahedron.png|
|gstD-vfigimage=Great stellated truncated dodecahedron vertfig.png|gstD-vfig=3.10/3.10/3|
|gstD-altname1=Quasitruncated great stellated dodecahedron|
|gstD-altname2=Great stellatruncated dodecahedron|
|gstD-Coxeter={{CDD|node_1|5|rat|3x|node_1|3|node}}
|gstD-Wythoff=2 3 | 5/3|
|gstD-W=104|gstD-U=66|gstD-K=71|gstD-C=83|
|gstD-V=60|gstD-E=90|gstD-F=32|gstD-Fdetail=20{3}+12{10/3}|
|gstD-chi=2|gstD-group=Ih, [5,3], *532|
|gstD-dimage=DU66 great triakisicosahedron.png
|ugrID-name=Nonconvex great rhombicosidodecahedron|
|ugrID-name2=Great rhombicosidodecahedron|
|ugrID-B=Qrid
|ugrID-dual=Great deltoidal hexecontahedron
|ugrID-dual2=Great sagittal ditriacontahedron
|ugrID-image=Uniform great rhombicosidodecahedron.png|
|ugrID-vfigimage=Uniform great rhombicosidodecahedron vertfig.png|ugrID-vfig=3.4.5/3.4|
|ugrID-altname1=Quasirhombicosidodecahedron|
|ugrID-Coxeter={{CDD|node_1|5|rat|3x|node|3|node_1}}
|ugrID-Wythoff=5/3 3 | 2
5/2 3/2 | 2|
|ugrID-W=105|ugrID-U=67|ugrID-K=72|ugrID-C=84|
|ugrID-V=60|ugrID-E=120|ugrID-F=62|ugrID-Fdetail=20{3}+30{4}+12{5/2}|
|ugrID-chi=2|ugrID-group=Ih, [5,3], *532|
|ugrID-dimage=DU67 great strombic hexecontahedron.png
|gtID-name=Great truncated icosidodecahedron|
|gtID-name2=Stellatruncated icosidodecahedron|
|gtID-B=Gaquatid
|gtID-dual=Great disdyakis triacontahedron
|gtID-dual2=
|gtID-image=Great truncated icosidodecahedron.png|
|gtID-vfigimage=Great truncated icosidodecahedron vertfig.png|gtID-vfig=4.6.10/3|
|gtID-altname1=Great quasitruncated icosidodecahedron|
|gtID-Coxeter={{CDD|node_1|5|rat|3x|node_1|3|node_1}}
|gtID-Wythoff=2 3 5/3 | |
|gtID-W=108|gtID-U=68|gtID-K=73|gtID-C=87|
|gtID-V=120|gtID-E=180|gtID-F=62|gtID-Fdetail=30{4}+20{6}+12{10/3}|
|gtID-chi=2|gtID-group=Ih, [5,3], *532|
|gtID-dimage=DU68 great disdyakistriacontahedron.png
|Gisid-name=Great inverted snub icosidodecahedron|
|Gisid-name2=Great snub icosidodecahedron|
|Gisid-B=Gisid
|Gisid-dual=Great inverted pentagonal hexecontahedron
|Gisid-dual2=Great petaloid ditriacontahedron
|Gisid-image=Great inverted snub icosidodecahedron.png|
|Gisid-vfigimage=Great inverted snub icosidodecahedron vertfig.png|
|Gisid-Coxeter={{CDD|node_h|5|rat|3x|node_h|3|node_h}}
|Gisid-Wythoff=| 5/3 2 3|
|Gisid-vfig=34.5/3|
|Gisid-group=I, [5,3]+, 532
|Gisid-W=116|Gisid-U=69|Gisid-K=74|Gisid-C=73|
|Gisid-V=60|Gisid-E=150|Gisid-F=92|Gisid-chi=2|Gisid-Fdetail=(20+60){3}+12{5/2}|
|Gisid-dimage=DU69 great inverted pentagonal hexecontahedron.png
|gDhD-name=Great dodecahemidodecahedron|
|gDhD-name2=|
|gDhD-B=Gidhid
|gDhD-dual=Great dodecahemidodecacron
|gDhD-dual2=
|gDhD-image=Great dodecahemidodecahedron.png|
|gDhD-vfigimage=Great dodecahemidodecahedron vertfig.png|gDhD-vfig=5/2.10/3.5/3.10/3|
|gDhD-Coxeter=
|gDhD-Wythoff=5/3 5/2 | 5/3 (double covering)|
|gDhD-W=107|gDhD-U=70|gDhD-K=75|gDhD-C=86|
|gDhD-V=30|gDhD-E=60|gDhD-F=18|gDhD-Fdetail=12{5/2}+6{10/3}|
|gDhD-chi=−12|gDhD-group=Ih, [5,3], *532|
|gDhD-dimage=Great dodecahemidodecacron.png
|gIhD-name=Great icosihemidodecahedron|
|gIhD-name2=|
|gIhD-B=Geihid
|gIhD-dual=Great icosihemidodecacron
|gIhD-dual2=
|gIhD-image=Great icosihemidodecahedron.png|
|gIhD-vfigimage=Great icosihemidodecahedron vertfig.png|gIhD-vfig=3.10/3.3/2.10/3|
|gIhD-Coxeter={{CDD|label5-3|branch_11|split2-t3|node}}
|gIhD-Wythoff=3/2 3 | 5/3|
|gIhD-W=106|gIhD-U=71|gIhD-K=76|gIhD-C=85|
|gIhD-V=30|gIhD-E=60|gIhD-F=26|gIhD-Fdetail=20{3}+6{10/3}|
|gIhD-chi=−4|gIhD-group=Ih, [5,3], *532|
|gIhD-dimage=Great dodecahemidodecacron.png
|Sirsid-name=Small retrosnub icosicosidodecahedron|
|Sirsid-name2=Retrosnub disicosidodecahedron|
|Sirsid-dual=Small hexagrammic hexecontahedron|
|Sirsid-dual2=
|Sirsid-image=Small retrosnub icosicosidodecahedron.png|
|Sirsid-vfigimage=Small retrosnub icosicosidodecahedron vertfig.png|
|Sirsid-Coxeter=
|Sirsid-Wythoff=| 3/2 3/2 5/2|
|Sirsid-vfig=(35.5/3)/2|
|Sirsid-B=Sirsid|Sirsid-group=Ih, [5,3], *532|
|Sirsid-W=118|Sirsid-U=72|Sirsid-K=77|Sirsid-C=91|
|Sirsid-V=60|Sirsid-E=180|Sirsid-F=112|Sirsid-chi=−8|Sirsid-Fdetail=(40+60){3}+12{5/2}|
|Sirsid-altname1=Small inverted retrosnub icosicosidodecahedron|
|Sirsid-dimage=DU72 small hexagrammic hexecontahedron.png
|grD-name=Great rhombidodecahedron|
|grD-name2=|
|grD-B=Gird
|grD-dual=Great rhombidodecacron
|grD-dual2=Great dipteral ditriacontahedron
|grD-image=Great rhombidodecahedron.png|
|grD-vfigimage=Great rhombidodecahedron vertfig.png|grD-vfig=4.10/3.4/3.10/7|
|grD-Coxeter={{CDD|node_1|5|rat|3x|node_1|3x|rat|2x|node_1}} (with extra double-covered triangles)
{{CDD|node_1|5|rat|3x|node_1|5|rat|4|node_1}} (with extra double-covered pentagrams)
|grD-Wythoff=2 5/3 (3/2 5/4) | |
|grD-W=109|grD-U=73|grD-K=78|grD-C=89|
|grD-V=60|grD-E=120|grD-F=42|grD-Fdetail=30{4}+12{10/3}|
|grD-chi=−18|grD-group=Ih, [5,3], *532|
|grD-dimage=DU73 great rhombidodecacron.png
|Girsid-name=Great retrosnub icosidodecahedron|
|Girsid-name2=|
|Girsid-B=Girsid
|Girsid-dual=Great pentagrammic hexecontahedron
|Girsid-dual2=Great astroid ditriacontahedron
|Girsid-image=Great retrosnub icosidodecahedron.png|
|Girsid-vfigimage=Great retrosnub icosidodecahedron vertfig.png|
|Girsid-Coxeter={{CDD|node_h|5|rat|3x|node_h|3x|rat|2x|node_h}}
|Girsid-Wythoff=| 2 3/2 5/3|
|Girsid-vfig=(34.5/2)/2|
|Girsid-group=I, [5,3]+, 532
|Girsid-W=117|Girsid-U=74|Girsid-K=79|Girsid-C=90|
|Girsid-V=60|Girsid-E=150|Girsid-F=92|Girsid-chi=2|Girsid-Fdetail=(20+60){3}+12{5/2}|
|Girsid-altname1=Great inverted retrosnub icosidodecahedron|
|Girsid-dimage=DU74 great pentagrammic hexecontahedron.png
|Gidrid-name=Great dirhombicosidodecahedron|
|Gidrid-name2=|
|Gidrid-B=Gidrid
|Gidrid-dual=Great dirhombicosidodecacron
|Gidrid-dual2=
|Gidrid-image=Great dirhombicosidodecahedron.png|
|Gidrid-vfigimage=Great dirhombicosidodecahedron vertfig.png|
|Gidrid-Coxeter=
|Gidrid-Wythoff=| 3/2 5/3 3 5/2|
|Gidrid-vfig=4.5/3.4.3.4.5/2.4.3/2|
|Gidrid-group=Ih, [5,3], *532
|Gidrid-W=119|Gidrid-U=75|Gidrid-K=80|Gidrid-C=92|
|Gidrid-V=60|Gidrid-E=240|Gidrid-F=124|Gidrid-chi=−56|Gidrid-Fdetail=40{3}+60{4}+24{5/2}|
|Gidrid-dimage=Great_dirhombicosidodecacron.png
|Skilling-name=Great disnub dirhombidodecahedron|
|Skilling-name2=|
|Skilling-dual=Great disnub dirhombidodecacron
|Skilling-dual2=
|Skilling-image=Great disnub dirhombidodecahedron.png|
|Skilling-vfigimage=Great disnub dirhombidodecahedron vertfig.png|
|Skilling-coxeter=
|Skilling-Wythoff=| (3/2) 5/3 (3) 5/2|
|Skilling-vfig=(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2|
|Skilling-B=Gidisdrid|Skilling-group=Ih, [5,3], *532
|Skilling-W=-|Skilling-U=-|Skilling-K=-|Skilling-C=-|
|Skilling-V=60|Skilling-E=360|Skilling-F=204|Skilling-chi=−96|Skilling-Fdetail=120{3}+60{4}+24{5/2}|
|Skilling-dimage=Great_dirhombicosidodecacron.png
|Cid-name=Small complex icosidodecahedron|
|Cid-name2=|
|Cid-B=Cid
|Cid-dual=Small complex icosidodecacron|
|Cid-dual2=
|Cid-image=Small complex icosidodecahedron.png|
|Cid-vfigimage=Small complex icosidodecahedron verf.png|
|Cid-Coxeter={{CDD|label5|branch_01rd|split2-5t|node}}
|Cid-Wythoff= 5 | 3/2 5|
|Cid-vfig=(3/2.5)5
(3.5)5/3|
|Cid-group=Ih, [5,3], *532|
|Cid-W=-|Cid-U=-|Cid-K=-|Cid-C=-|
|Cid-V=12|Cid-E=60 (30x2)|Cid-F=32|Cid-chi=−16|Cid-Fdetail=20{3}+12{5}|
|Cid-dimage=Small complex icosidodecacron.png
|Gacid-name=Great complex icosidodecahedron|
|Gacid-name2=|
|Gacid-B=Gacid
|Gacid-dual=Great complex icosidodecacron|
|Gacid-dual2=
|Gacid-image=Great complex icosidodecahedron.png|
|Gacid-vfigimage=Great complex icosidodecahedron verf.png|
|Gacid-Coxeter={{CDD|label5-3|branch_01rd|split2-5t|node}}
|Gacid-Wythoff= 5 | 3 5/3 |
|Gacid-vfig=(3.5/3)5
(3.5/2)5/3|
|Gacid-group=Ih, [5,3], *532|
|Gacid-W=-|Gacid-U=-|Gacid-K=-|Gacid-C=-|
|Gacid-V=12|Gacid-E=60 (30x2)|Gacid-F=32|Gacid-chi=-16|Gacid-Fdetail=20{3}+12{5/2}|
|Gacid-dimage=Great complex icosidodecacron.png
|Scrid-name=Small complex rhombicosidodecahedron|
|Scrid-name2=|
|Scrid-B=Sicdatrid
|Scrid-dual=Small complex rhombicosidodecacron|
|Scrid-dual2=
|Scrid-image=Cantellated great icosahedron.png|
|Scrid-vfigimage=Cantellated great icosahedron vf.png
|Scrid-Coxeter={{CDD|node_1|5|rat|2x|node|3|node_1}}
|Scrid-Wythoff=5/2 3 | 2
|Scrid-vfig=3(3.4.5/2.4)
|Scrid-group=Ih, [5,3], *532|
|Scrid-W=-|Scrid-U=-|Scrid-K=-|Scrid-C=-|
|Scrid-V=20|Scrid-E=120 (60x2)|Scrid-F=62|Scrid-chi=-38|Scrid-Fdetail=20{3}+12{5/2}+30{4}|
|Scrid-dimage= No image.svg
|No-Face-Image={{{No-Face-Image|}}}|
}}
{{documentation|content=
{{Polyhedron templates}}