Template:diagnostic testing diagram
class="wikitable" align="center" style="border:none; background:transparent; text-align:center;"
| style="border:none;" rowspan="2" | | style="border:none;" | | style="background:#bbeeee;" colspan="2" | Predicted condition | style="border:none; text-align:right;" colspan="2" | Sources: {{cite journal |last=Fawcett |first=Tom |title=An Introduction to ROC Analysis |journal=Pattern Recognition Letters |date=2006 |volume=27 |issue=8 |pages=861–874 |doi=10.1016/j.patrec.2005.10.010 |s2cid=2027090 |url=http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf}}{{Cite web |url=https://www.researchgate.net/publication/256438799|title=Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. |last1=Provost |first1=Foster |date=2013-08-01 |website=O'Reilly Media, Inc. |language=en|last2=Tom Fawcett }} {{cite journal |first=David M. W. |last=Powers |date=2011 |title=Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation |journal=Journal of Machine Learning Technologies |volume=2 |issue=1 |pages=37–63 |url=https://www.researchgate.net/publication/228529307}} {{cite book |last=Ting |first=Kai Ming |editor2-first=Geoffrey I. |editor2-last=Webb |editor1-first=Claude |editor1-last=Sammut |title=Encyclopedia of machine learning |date=2011 |publisher=Springer |doi=10.1007/978-0-387-30164-8 |isbn=978-0-387-30164-8 }} {{cite web |url=https://www.cawcr.gov.au/projects/verification/ |title=WWRP/WGNE Joint Working Group on Forecast Verification Research |last1=Brooks |first1=Harold |last2=Brown |first2=Barb |last3=Ebert |first3=Beth |last4=Ferro |first4=Chris |last5=Jolliffe |first5=Ian |last6=Koh |first6=Tieh-Yong |last7=Roebber |first7=Paul |last8=Stephenson |first8=David |date=2015-01-26|website=Collaboration for Australian Weather and Climate Research|publisher=World Meteorological Organisation|access-date=2019-07-17}} {{cite journal |vauthors = Chicco D, Jurman G |title = The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation |journal = BMC Genomics |volume = 21 |issue = 1 |date = January 2020 |page = 6-1–6-13 |pmid = 31898477 |doi = 10.1186/s12864-019-6413-7 |pmc = 6941312 |doi-access = free }} {{cite journal |vauthors = Chicco D, Toetsch N, Jurman G |title = The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation |journal = BioData Mining |volume = 14 |issue = 13 |date = February 2021 |page = 13 |pmid = 33541410 | pmc = 7863449 |doi = 10.1186/s13040-021-00244-z |doi-access = free }} {{cite journal |author = Tharwat A. |title = Classification assessment methods |journal = Applied Computing and Informatics |date = August 2018 |volume = 17 |pages = 168–192 |doi = 10.1016/j.aci.2018.08.003 |doi-access = free }} {{navbar|Diagnostic testing diagram|plain=y}} |
style="background:#eeeeee;" | Total population {{math|{{=}} P + N}} | style="background:#ccffff;" | Predicted positive | style="background:#aadddd;" | Predicted negative | style="border-left:double silver;background:#ffffff" | Informedness, {{small|bookmaker informedness (BM)}} | style="background:#ffffff;" | Prevalence threshold (PT) |
rowspan="2" {{verth|va=middle|cellstyle=background:#eeeebb;|Actual condition}}
| style="background:#ffffcc;" | Positive (P) {{efn|the number of real positive cases in the data}} | style="background:#ccffcc;" | True positive (TP), | style="background:#ffdddd;" | False negative (FN), | style="background:#eeffee;" | True positive rate (TPR), recall, sensitivity (SEN), {{small|probability of detection, hit rate, power}} | style="background:#ffeeee;" | False negative rate (FNR), |
style="background:#ddddaa;" | Negative (N){{efn|the number of real negative cases in the data}}
| style="background:#ffcccc;" | False positive (FP), | style="background:#bbeebb;" | True negative (TN), | style="background:#eedddd;" | False positive rate (FPR), | style="background:#ddeedd;"| True negative rate (TNR), |
style="border:none;" rowspan="3"|
| style="border-top:double silver; border-right:double silver;background:#ffffff;" | Prevalence | style="background:#eeffee;" | {{nowrap|Positive predictive value (PPV),}} {{small|precision}} | style="background:#ddeedd;" | Negative predictive value (NPV) | style="background:#eeeeff;" | Positive likelihood ratio (LR+) | style="background:#eeeeff;" | Negative likelihood ratio (LR−) |
style="border-right:double silver;background:#ffffff;"|Accuracy (ACC) {{math|{{=}} {{sfrac|TP + TN|P + N}}}} | style="background:#eedddd;"|False discovery rate (FDR) | style="background:#ffeeee;border-right:double silver;"|False omission rate (FOR) | style="border-top:double silver;border-right:double silver;background:#ffffff;" | Markedness (MK), {{small|deltaP (Δp)}} | style="background:#eeeeff;" | Diagnostic odds ratio (DOR) |
style="background:#ffffff;" | Balanced accuracy (BA) {{math|{{=}} {{sfrac|TPR + TNR|2}}}} | style="border-top:double silver;background:#ffffff;"|F1 score | style="border-top:double silver;background:#ffffff;"|Fowlkes–Mallows index (FM) | style="border-top:double silver;background:#ffffff;"|phi or Matthews correlation coefficient (MCC) |
{{sqrt|FNR × FPR × FOR × FDR}}|size=80%}}
| style="border-top:double silver;background:#ffffff;" colspan="2"|Threat score (TS), critical success index (CSI), Jaccard index |
{{notelist}}
{{Template reference list}}
{{documentation
|content=
{{no documentation}}
}}