Tensor derivative (continuum mechanics)

{{Short description|none}}

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.{{ cite book | first1 = J. C. | last1 = Simo | first2 = T. J. R. | last2 = Hughes | year = 1998 | title = Computational Inelasticity | publisher = Springer | isbn = 978-0-387-97520-7 | doi = 10.1007/b98904 }}

The directional derivative provides a systematic way of finding these derivatives.{{ cite book | first1 = Jerrold E. | last1 = Marsden | first2 = Thomas J. R. | last2 = Hughes | year = 2000 | title = Mathematical Foundations of Elasticity | publisher = Dover | isbn = 978-0-486-678658 }}

Derivatives with respect to vectors and second-order tensors

The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.

=Derivatives of scalar valued functions of vectors=

Let f(v) be a real valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) is the vector defined through its dot product with any vector u being

\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = Df(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~f(\mathbf{v} + \alpha~\mathbf{u})\right]_{\alpha=0}

for all vectors u. The above dot product yields a scalar, and if u is a unit vector gives the directional derivative of f at v, in the u direction.

Properties:

  1. If f(\mathbf{v}) = f_1(\mathbf{v}) + f_2(\mathbf{v}) then \frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \left(\frac{\partial f_1}{\partial \mathbf{v}} + \frac{\partial f_2}{\partial \mathbf{v}}\right)\cdot\mathbf{u}
  2. If f(\mathbf{v}) = f_1(\mathbf{v})~ f_2(\mathbf{v}) then \frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \left(\frac{\partial f_1}{\partial \mathbf{v}} \cdot \mathbf{u} \right)~f_2(\mathbf{v}) + f_1(\mathbf{v})~\left(\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u} \right)
  3. If f(\mathbf{v}) = f_1(f_2(\mathbf{v})) then \frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial f_1}{\partial f_2}~\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u}

=Derivatives of vector valued functions of vectors=

Let f(v) be a vector valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) is the second order tensor defined through its dot product with any vector u being

\frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = D\mathbf{f}(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~\mathbf{f}(\mathbf{v} + \alpha~\mathbf{u} ) \right]_{\alpha = 0}

for all vectors u. The above dot product yields a vector, and if u is a unit vector gives the direction derivative of f at v, in the directional u.

Properties:

  1. If \mathbf{f}(\mathbf{v}) = \mathbf{f}_1(\mathbf{v}) + \mathbf{f}_2(\mathbf{v}) then \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = \left(\frac{\partial \mathbf{f}_1}{\partial \mathbf{v}} + \frac{\partial \mathbf{f}_2}{\partial \mathbf{v}}\right)\cdot\mathbf{u}
  2. If \mathbf{f}(\mathbf{v}) = \mathbf{f}_1(\mathbf{v})\times\mathbf{f}_2(\mathbf{v}) then \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = \left(\frac{\partial \mathbf{f}_1}{\partial \mathbf{v}}\cdot\mathbf{u}\right)\times\mathbf{f}_2(\mathbf{v}) + \mathbf{f}_1(\mathbf{v})\times\left(\frac{\partial \mathbf{f}_2}{\partial \mathbf{v}}\cdot\mathbf{u} \right)
  3. If \mathbf{f}(\mathbf{v}) = \mathbf{f}_1(\mathbf{f}_2(\mathbf{v})) then \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial \mathbf{f}_1}{\partial \mathbf{f}_2}\cdot\left(\frac{\partial \mathbf{f}_2}{\partial \mathbf{v}}\cdot\mathbf{u} \right)

=Derivatives of scalar valued functions of second-order tensors=

Let f(\boldsymbol{S}) be a real valued function of the second order tensor \boldsymbol{S}. Then the derivative of f(\boldsymbol{S}) with respect to \boldsymbol{S} (or at \boldsymbol{S}) in the direction \boldsymbol{T} is the second order tensor defined as

\frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = Df(\boldsymbol{S})[\boldsymbol{T}] = \left[\frac{d}{d\alpha}~f(\boldsymbol{S} + \alpha~\boldsymbol{T})\right]_{\alpha = 0}

for all second order tensors \boldsymbol{T}.

Properties:

  1. If f(\boldsymbol{S}) = f_1(\boldsymbol{S}) + f_2(\boldsymbol{S}) then \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \left(\frac{\partial f_1}{\partial \boldsymbol{S}} + \frac{\partial f_2}{\partial \boldsymbol{S}}\right):\boldsymbol{T}
  2. If f(\boldsymbol{S}) = f_1(\boldsymbol{S})~ f_2(\boldsymbol{S}) then \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \left(\frac{\partial f_1}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)~f_2(\boldsymbol{S}) + f_1(\boldsymbol{S})~\left(\frac{\partial f_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right)
  3. If f(\boldsymbol{S}) = f_1(f_2(\boldsymbol{S})) then \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \frac{\partial f_1}{\partial f_2}~\left(\frac{\partial f_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right)

=Derivatives of tensor valued functions of second-order tensors=

Let \boldsymbol{F}(\boldsymbol{S}) be a second order tensor valued function of the second order tensor \boldsymbol{S}. Then the derivative of \boldsymbol{F}(\boldsymbol{S}) with respect to \boldsymbol{S} (or at \boldsymbol{S}) in the direction \boldsymbol{T} is the fourth order tensor defined as

\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{S}}:\boldsymbol{T} = D\boldsymbol{F}(\boldsymbol{S})[\boldsymbol{T}] = \left[\frac{d}{d\alpha}~\boldsymbol{F}(\boldsymbol{S} + \alpha~\boldsymbol{T})\right]_{\alpha = 0}

for all second order tensors \boldsymbol{T}.

Properties:

  1. If \boldsymbol{F}(\boldsymbol{S}) = \boldsymbol{F}_1(\boldsymbol{S}) + \boldsymbol{F}_2(\boldsymbol{S}) then \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{S}}:\boldsymbol{T} = \left(\frac{\partial \boldsymbol{F}_1}{\partial \boldsymbol{S}} + \frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}\right):\boldsymbol{T}
  2. If \boldsymbol{F}(\boldsymbol{S}) = \boldsymbol{F}_1(\boldsymbol{S})\cdot\boldsymbol{F}_2(\boldsymbol{S}) then \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{S}}:\boldsymbol{T} = \left(\frac{\partial \boldsymbol{F}_1}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)\cdot\boldsymbol{F}_2(\boldsymbol{S}) + \boldsymbol{F}_1 (\boldsymbol{S}) \cdot\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right)
  3. If \boldsymbol{F}(\boldsymbol{S}) = \boldsymbol{F}_1(\boldsymbol{F}_2(\boldsymbol{S})) then \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{S}}:\boldsymbol{T} = \frac{\partial \boldsymbol{F}_1}{\partial \boldsymbol{F}_2}:\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right)
  4. If f(\boldsymbol{S}) = f_1(\boldsymbol{F}_2(\boldsymbol{S})) then \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \frac{\partial f_1}{\partial \boldsymbol{F}_2}:\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right)

Gradient of a tensor field

The gradient, \boldsymbol{\nabla}\boldsymbol{T}, of a tensor field \boldsymbol{T}(\mathbf{x}) in the direction of an arbitrary constant vector c is defined as:

\boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} = \lim_{\alpha \rightarrow 0} \quad \cfrac{d}{d\alpha}~\boldsymbol{T}(\mathbf{x}+\alpha\mathbf{c})

The gradient of a tensor field of order n is a tensor field of order n+1.

= Cartesian coordinates =

{{Einstein_summation_convention}}

If \mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3 are the basis vectors in a Cartesian coordinate system, with coordinates of points denoted by (x_1, x_2, x_3), then the gradient of the tensor field \boldsymbol{T} is given by

\boldsymbol{\nabla}\boldsymbol{T} = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i

{{math proof | proof = The vectors x and c can be written as \mathbf{x} = x_i~\mathbf{e}_i and \mathbf{c} = c_i~\mathbf{e}_i . Let y := x + αc. In that case the gradient is given by

\begin{align}

\boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} & = \left.\cfrac{d}{d\alpha}~\boldsymbol{T}(x_1+\alpha c_1, x_2 + \alpha c_2, x_3 + \alpha c_3)\right|_{\alpha=0} \equiv \left.\cfrac{d}{d\alpha}~\boldsymbol{T}(y_1, y_2, y_3)\right|_{\alpha=0} \\

& = \left [\cfrac{\partial{\boldsymbol{T}}}{\partial y_1}~\cfrac{\partial y_1}{\partial \alpha} + \cfrac{\partial{\boldsymbol{T}}}{\partial y_2}~\cfrac{\partial y_2}{\partial \alpha} +

\cfrac{\partial{\boldsymbol{T}}}{\partial y_3}~\cfrac{\partial y_3}{\partial \alpha} \right]_{\alpha=0} =

\left [\cfrac{\partial{\boldsymbol{T}}}{\partial y_1}~c_1 + \cfrac{\partial{\boldsymbol{T}}}{\partial y_2}~c_2 +

\cfrac{\partial{\boldsymbol{T}}}{\partial y_3}~c_3 \right]_{\alpha=0} \\

& = \cfrac{\partial{\boldsymbol{T}}}{\partial x_1}~c_1 + \cfrac{\partial{\boldsymbol{T}}}{\partial x_2}~c_2 +

\cfrac{\partial{\boldsymbol{T}}}{\partial x_3}~c_3 \equiv \cfrac{\partial{\boldsymbol{T}}}{\partial x_i}~c_i = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i}~(\mathbf{e}_i\cdot\mathbf{c})

= \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square

\end{align} }}

Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar field \phi, a vector field v, and a second-order tensor field \boldsymbol{S}.

\begin{align}

\boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\

\boldsymbol{\nabla}\mathbf{v} & = \cfrac{\partial (v_j \mathbf{e}_j)}{\partial x_i}\otimes\mathbf{e}_i = \cfrac{\partial v_j}{\partial x_i}~\mathbf{e}_j\otimes\mathbf{e}_i = v_{j,i}~\mathbf{e}_j\otimes\mathbf{e}_i \\

\boldsymbol{\nabla}\boldsymbol{S} & = \cfrac{\partial (S_{jk} \mathbf{e}_j\otimes\mathbf{e}_k)}{\partial x_i}\otimes\mathbf{e}_i = \cfrac{\partial S_{jk}}{\partial x_i}~\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_i = S_{jk,i}~\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_i

\end{align}

= Curvilinear coordinates =

{{main|Tensors in curvilinear coordinates}}

{{Einstein_summation_convention}}

If \mathbf{g}^1,\mathbf{g}^2,\mathbf{g}^3 are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (\xi^1, \xi^2, \xi^3), then the gradient of the tensor field \boldsymbol{T} is given by{{ cite book | first = R. W. | last = Ogden | year = 2000 | title = Nonlinear Elastic Deformations | publisher = Dover | isbn = 978-0-486-696485 }}

\boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i

From this definition we have the following relations for the gradients of a scalar field \phi, a vector field v, and a second-order tensor field \boldsymbol{S}.

\begin{align}

\boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\[1.2ex]

\boldsymbol{\nabla}\mathbf{v} & = \frac{\partial\left(v^j \mathbf{g}_j\right)}{\partial\xi^i}\otimes\mathbf{g}^i \\

&= \left(\frac{\partial v^j}{\partial\xi^i} + v^k~\Gamma_{ik}^j\right)~\mathbf{g}_j\otimes\mathbf{g}^i

= \left(\frac{\partial v_j}{\partial\xi^i} - v_k~\Gamma_{ij}^k\right)~\mathbf{g}^j\otimes\mathbf{g}^i \\[1.2ex]

\boldsymbol{\nabla}\boldsymbol{S} & = \frac{\partial\left(S_{jk}~\mathbf{g}^j\otimes\mathbf{g}^k\right)}{\partial\xi^i}\otimes\mathbf{g}^i \\

&= \left(\frac{\partial S_{jk}}{\partial\xi_i} - S_{lk}~\Gamma_{ij}^l - S_{jl}~\Gamma_{ik}^l\right)~\mathbf{g}^j\otimes\mathbf{g}^k\otimes\mathbf{g}^i

\end{align}

where the Christoffel symbol \Gamma_{ij}^k is defined using

\Gamma_{ij}^k~\mathbf{g}_k = \frac{\partial\mathbf{g}_i}{\partial\xi^j} \quad \implies \quad

\Gamma_{ij}^k = \frac{\partial\mathbf{g}_i}{\partial\xi^j}\cdot\mathbf{g}^k = -\mathbf{g}_i\cdot\frac{\partial \mathbf{g}^k}{\partial\xi^j}

== Cylindrical polar coordinates ==

In cylindrical coordinates, the gradient is given by

\begin{align}

\boldsymbol{\nabla}\phi ={}\quad

&\frac{\partial\phi}{\partial r}~\mathbf{e}_r

+ \frac{1}{r}~\frac{\partial \phi}{\partial \theta}~\mathbf{e}_\theta

+ \frac{\partial\phi}{\partial z}~\mathbf{e}_z \\

\end{align}

\begin{align}

\boldsymbol{\nabla}\mathbf{v} ={}\quad

&\frac{\partial v_r}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_r

+ \frac{1}{r}\left(\frac{\partial v_r}{\partial\theta} - v_\theta\right)~\mathbf{e}_r \otimes \mathbf{e}_\theta

+ \frac{\partial v_r}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_z \\

{}+{} &\frac{\partial v_\theta}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_r

+ \frac{1}{r}\left(\frac{\partial v_\theta}{\partial\theta} + v_r\right)~\mathbf{e}_\theta \otimes \mathbf{e}_\theta

+ \frac{\partial v_\theta}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_z \\

{}+{} &\frac{\partial v_z}{\partial r}~\mathbf{e}_z\otimes\mathbf{e}_r

+ \frac{1}{r}\frac{\partial v_z}{\partial\theta}~\mathbf{e}_z \otimes\mathbf{e}_\theta

+ \frac{\partial v_z}{\partial z}~\mathbf{e}_z\otimes\mathbf{e}_z \\

\end{align}

\begin{align}

\boldsymbol{\nabla}\boldsymbol{S} ={}\quad

&\frac{\partial S_{rr}}{\partial r}~\mathbf{e}_r\otimes\mathbf{e}_r\otimes\mathbf{e}_r

+ \frac{\partial S_{rr}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_r \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{rr}}{\partial\theta} - (S_{\theta r} + S_{r\theta})\right]~\mathbf{e}_r \otimes \mathbf{e}_r\otimes\mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{r\theta}}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r

+ \frac{\partial S_{r\theta}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{r\theta}}{\partial\theta} + (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{rz}}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_r

+ \frac{\partial S_{rz}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{rz}}{\partial \theta} - S_{\theta z}\right]~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{\theta r}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_r

+ \frac{\partial S_{\theta r}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{\theta r}}{\partial\theta} + (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{\theta\theta}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r

+ \frac{\partial S_{\theta\theta}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{\theta\theta}}{\partial\theta} + (S_{r\theta} + S_{\theta r})\right]~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{\theta z}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_r

+ \frac{\partial S_{\theta z}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{\theta z}}{\partial\theta} + S_{rz}\right]~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{zr}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_r

+ \frac{\partial S_{zr}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{zr}}{\partial \theta} - S_{z\theta}\right]~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{z\theta}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r

+ \frac{\partial S_{z\theta}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z

+ \frac{1}{r}\left[\frac{\partial S_{z\theta}}{\partial\theta} + S_{zr}\right]~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\

{}+{} &\frac{\partial S_{zz}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_r

+ \frac{\partial S_{zz}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_z

+ \frac{1}{r}~\frac{\partial S_{zz}}{\partial\theta}~ \mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta

\end{align}

Divergence of a tensor field

The divergence of a tensor field \boldsymbol{T}(\mathbf{x}) is defined using the recursive relation

(\boldsymbol{\nabla}\cdot\boldsymbol{T})\cdot\mathbf{c} =

\boldsymbol{\nabla}\cdot\left(\mathbf{c}\cdot\boldsymbol{T}^\textsf{T}\right) ~;\qquad

\boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v})

where c is an arbitrary constant vector and v is a vector field. If \boldsymbol{T} is a tensor field of order n > 1 then the divergence of the field is a tensor of order n− 1.

= Cartesian coordinates =

{{Einstein_summation_convention}}

In a Cartesian coordinate system we have the following relations for a vector field v and a second-order tensor field \boldsymbol{S}.

\begin{align}

\boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\

\boldsymbol{\nabla}\cdot\boldsymbol{S} &= \frac{\partial S_{ik}}{\partial x_i}~\mathbf{e}_k = S_{ik, i}~\mathbf{e}_k

\end{align}

where tensor index notation for partial derivatives is used in the rightmost expressions. Note that

\boldsymbol{\nabla}\cdot\boldsymbol{S} \neq \boldsymbol{\nabla}\cdot\boldsymbol{S}^\textsf{T}.

For a symmetric second-order tensor, the divergence is also often written as{{ cite book | last1 = Hjelmstad | first1 = Keith | title = Fundamentals of Structural Mechanics | date = 2004 | publisher = Springer Science & Business Media | isbn = 978-0-387-233307 | page = 45 }}

\begin{align}

\boldsymbol{\nabla}\cdot\boldsymbol{S} &= \cfrac{\partial S_{ki}}{\partial x_i}~\mathbf{e}_k = S_{ki,i}~\mathbf{e}_k

\end{align}

The above expression is sometimes used as the definition of

\boldsymbol{\nabla}\cdot\boldsymbol{S} in Cartesian component form (often also written as

\operatorname{div}\boldsymbol{S}). Note that such a definition is not consistent with the rest of this article (see the section on curvilinear co-ordinates).

The difference stems from whether the differentiation is performed with respect to the rows or columns of \boldsymbol{S}, and is conventional. This is demonstrated by an example. In a Cartesian coordinate system the second order tensor (matrix) \mathbf{S} is the gradient of a vector function \mathbf{v}.

\begin{align}

\boldsymbol{\nabla} \cdot \left( \boldsymbol{\nabla} \mathbf{v} \right) &=

\boldsymbol{\nabla} \cdot \left( v_{i,j} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =

v_{i,ji} ~\mathbf{e}_i \cdot \mathbf{e}_i \otimes \mathbf{e}_j =

\left( \boldsymbol{\nabla} \cdot \mathbf{v} \right)_{,j} ~\mathbf{e}_j =

\boldsymbol{\nabla} \left( \boldsymbol{\nabla} \cdot \mathbf{v} \right) \\

\boldsymbol{\nabla} \cdot \left[ \left( \boldsymbol{\nabla} \mathbf{v} \right)^\textsf{T} \right] &=

\boldsymbol{\nabla} \cdot \left( v_{j,i} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =

v_{j,ii} ~\mathbf{e}_i \cdot \mathbf{e}_i \otimes \mathbf{e}_j =

\boldsymbol{\nabla}^{2} v_{j} ~\mathbf{e}_j =

\boldsymbol{\nabla}^{2} \mathbf{v}

\end{align}

The last equation is equivalent to the alternative definition / interpretation

\begin{align}

\left( \boldsymbol{\nabla} \cdot \right)_\text{alt} \left( \boldsymbol{\nabla} \mathbf{v} \right) =

\left( \boldsymbol{\nabla} \cdot \right)_\text{alt} \left( v_{i,j} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =

v_{i,jj} ~\mathbf{e}_i \otimes \mathbf{e}_j \cdot \mathbf{e}_j =

\boldsymbol{\nabla}^2 v_i ~\mathbf{e}_i =

\boldsymbol{\nabla}^2 \mathbf{v}

\end{align}

= Curvilinear coordinates =

{{main|Tensors in curvilinear coordinates}}

{{Einstein_summation_convention}}

In curvilinear coordinates, the divergences of a vector field v and a second-order tensor field \boldsymbol{S} are

\begin{align}

\boldsymbol{\nabla}\cdot\mathbf{v}

&= \left(\cfrac{\partial v^i}{\partial \xi^i} + v^k~\Gamma_{ik}^i\right)\\

\boldsymbol{\nabla}\cdot\boldsymbol{S}

&= \left(\cfrac{\partial S_{ik}}{\partial \xi_i}- S_{lk}~\Gamma_{ii}^l - S_{il}~\Gamma_{ik}^l\right)~\mathbf{g}^k

\end{align}

More generally,

\begin{align}

\boldsymbol{\nabla}\cdot\boldsymbol{S} & = \left[\cfrac{\partial S_{ij}}{\partial q^k} - \Gamma^l_{ki}~S_{lj} - \Gamma^l_{kj}~S_{il}\right]~g^{ik}~\mathbf{b}^j \\[8pt]

& = \left[\cfrac{\partial S^{ij}}{\partial q^i} + \Gamma^i_{il}~S^{lj} + \Gamma^j_{il}~S^{il}\right]~\mathbf{b}_j \\[8pt]

& = \left[\cfrac{\partial S^i_{~j}}{\partial q^i} + \Gamma^i_{il}~S^l_{~j} - \Gamma^l_{ij}~S^i_{~l}\right]~\mathbf{b}^j \\[8pt]

& = \left[\cfrac{\partial S_i^{~j}}{\partial q^k} - \Gamma^l_{ik}~S_l^{~j} + \Gamma^j_{kl}~S_i^{~l}\right]~g^{ik}~\mathbf{b}_j

\end{align}

== Cylindrical polar coordinates ==

In cylindrical polar coordinates

\begin{align}

\boldsymbol{\nabla}\cdot\mathbf{v} =\quad

&\frac{\partial v_r}{\partial r}

+ \frac{1}{r}\left(\frac{\partial v_\theta}{\partial\theta} + v_r \right)

+ \frac{\partial v_z}{\partial z}\\

\boldsymbol{\nabla}\cdot\boldsymbol{S} =\quad

&\frac{\partial S_{rr}}{\partial r}~\mathbf{e}_r

+ \frac{\partial S_{r\theta}}{\partial r}~\mathbf{e}_\theta

+ \frac{\partial S_{rz}}{\partial r}~\mathbf{e}_z \\

{}+{} &\frac{1}{r}\left[\frac{\partial S_{\theta r}}{\partial \theta}

+ (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_r

+ \frac{1}{r}\left[\frac{\partial S_{\theta\theta}}{\partial\theta}

+ (S_{r\theta} + S_{\theta r})\right]~\mathbf{e}_\theta

+ \frac{1}{r}\left[\frac{\partial S_{\theta z}}{\partial\theta} + S_{rz}\right]~\mathbf{e}_z \\

{}+{} &\frac{\partial S_{zr}}{\partial z}~\mathbf{e}_r

+ \frac{\partial S_{z\theta}}{\partial z}~\mathbf{e}_\theta

+ \frac{\partial S_{zz}}{\partial z}~\mathbf{e}_z

\end{align}

Curl of a tensor field

The curl of an order-n > 1 tensor field \boldsymbol{T}(\mathbf{x}) is also defined using the recursive relation

(\boldsymbol{\nabla}\times\boldsymbol{T})\cdot\mathbf{c} = \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{T}) ~;\qquad (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c} = \boldsymbol{\nabla}\cdot(\mathbf{v}\times\mathbf{c})

where c is an arbitrary constant vector and v is a vector field.

= Curl of a first-order tensor (vector) field =

Consider a vector field v and an arbitrary constant vector c. In index notation, the cross product is given by

\mathbf{v} \times \mathbf{c} = \varepsilon_{ijk}~v_j~c_k~\mathbf{e}_i

where \varepsilon_{ijk} is the permutation symbol, otherwise known as the Levi-Civita symbol. Then,

\boldsymbol{\nabla}\cdot(\mathbf{v} \times \mathbf{c}) = \varepsilon_{ijk}~v_{j,i}~c_k = (\varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c}

Therefore,

\boldsymbol{\nabla}\times\mathbf{v} = \varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k

= Curl of a second-order tensor field =

For a second-order tensor \boldsymbol{S}

\mathbf{c}\cdot\boldsymbol{S} = c_m~S_{mj}~\mathbf{e}_j

Hence, using the definition of the curl of a first-order tensor field,

\boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{S}) = \varepsilon_{ijk}~c_m~S_{mj,i}~\mathbf{e}_k = (\varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\boldsymbol{S}) \cdot \mathbf{c}

Therefore, we have

\boldsymbol{\nabla}\times\boldsymbol{S} = \varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m

= Identities involving the curl of a tensor field =

The most commonly used identity involving the curl of a tensor field, \boldsymbol{T}, is

\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{T}) = \boldsymbol{0}

This identity holds for tensor fields of all orders. For the important case of a second-order tensor, \boldsymbol{S}, this identity implies that

\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{S}) = \boldsymbol{0} \quad \implies \quad S_{mi,j} - S_{mj,i} = 0

Derivative of the determinant of a second-order tensor

The derivative of the determinant of a second order tensor \boldsymbol{A} is given by

\frac{\partial}{\partial\boldsymbol{A}}\det(\boldsymbol{A}) = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.

In an orthonormal basis, the components of \boldsymbol{A} can be written as a matrix A. In that case, the right hand side corresponds the cofactors of the matrix.

{{math proof| proof = Let \boldsymbol{A} be a second order tensor and let f(\boldsymbol{A}) = \det(\boldsymbol{A}). Then, from the definition of the derivative of a scalar valued function of a tensor, we have

\begin{align}

\frac{\partial f}{\partial\boldsymbol{A}}:\boldsymbol{T} & = \left.\cfrac{d}{d\alpha} \det(\boldsymbol{A} + \alpha~\boldsymbol{T}) \right|_{\alpha=0} \\

& = \left.\cfrac{d}{d\alpha} \det\left[\alpha~\boldsymbol{A}\left(\cfrac{1}{\alpha}~\boldsymbol{\mathit{I}} + \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) \right] \right|_{\alpha=0} \\

& = \left.\cfrac{d}{d\alpha} \left[\alpha^3~\det(\boldsymbol{A})~\det\left(\cfrac{1}{\alpha}~\boldsymbol{\mathit{I}} + \boldsymbol{A}^{-1} \cdot \boldsymbol{T}\right)\right]\right|_{\alpha=0}.

\end{align}

The determinant of a tensor can be expressed in the form of a characteristic equation in terms of the invariants I_1,I_2,I_3 using

\det(\lambda~\boldsymbol{\mathit{I}} + \boldsymbol{A}) = \lambda^3 + I_1(\boldsymbol{A})~\lambda^2 + I_2(\boldsymbol{A})~\lambda + I_3(\boldsymbol{A}).

Using this expansion we can write

\begin{align}

\frac{\partial f}{\partial\boldsymbol{A}}: \boldsymbol{T}

& = \left.\cfrac{d}{d\alpha} \left[\alpha^3~\det(\boldsymbol{A})~\left(

\cfrac{1}{\alpha^3} +

I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\cfrac{1}{\alpha^2} +

I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\cfrac{1}{\alpha} +

I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)

\right) \right] \right|_{\alpha=0} \\

& = \left.\det(\boldsymbol{A})~\cfrac{d}{d\alpha} \left[

1 + I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha +

I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^2 +

I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^3

\right] \right|_{\alpha=0} \\

& = \left.\det(\boldsymbol{A})~\left[

I_1(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}) +

2~I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha +

3~I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^2

\right] \right|_{\alpha=0} \\

& = \det(\boldsymbol{A})~I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) ~.

\end{align}

Recall that the invariant I_1 is given by

I_1(\boldsymbol{A}) = \text{tr}{\boldsymbol{A}}.

Hence,

\frac{\partial f}{\partial\boldsymbol{A}}: \boldsymbol{T} =

\det(\boldsymbol{A})~\text{tr}\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) =

\det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} : \boldsymbol{T}.

Invoking the arbitrariness of \boldsymbol{T} we then have

\frac{\partial f}{\partial\boldsymbol{A}} = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.

}}

Derivatives of the invariants of a second-order tensor

The principal invariants of a second order tensor are

\begin{align}

I_1(\boldsymbol{A}) & = \text{tr}{\boldsymbol{A}} \\

I_2(\boldsymbol{A}) & = \tfrac{1}{2} \left[ (\text{tr}{\boldsymbol{A}})^2 - \text{tr}{\boldsymbol{A}^2} \right] \\

I_3(\boldsymbol{A}) & = \det(\boldsymbol{A})

\end{align}

The derivatives of these three invariants with respect to \boldsymbol{A} are

\begin{align}

\frac{\partial I_1}{\partial\boldsymbol{A}} & = \boldsymbol{\mathit{1}} \\[3pt]

\frac{\partial I_2}{\partial\boldsymbol{A}} & = I_1 \, \boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T} \\[3pt]

\frac{\partial I_3}{\partial\boldsymbol{A}} & = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} \\

&= I_2~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}~\left(I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\right)

= \left(\boldsymbol{A}^2 - I_1~\boldsymbol{A} + I_2~\boldsymbol{\mathit{1}}\right)^\textsf{T}

\end{align}

{{math proof | proof = From the derivative of the determinant we know that

\frac{\partial I_3}{\partial \boldsymbol{A}} = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.

For the derivatives of the other two invariants, let us go back to the characteristic equation

\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) =

\lambda^3 + I_1(\boldsymbol{A})~\lambda^2 + I_2(\boldsymbol{A})~\lambda + I_3(\boldsymbol{A}) ~.

Using the same approach as for the determinant of a tensor, we can show that

\frac{\partial }{\partial \boldsymbol{A}}\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) =

\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\left[(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^{-1}\right]^\textsf{T} ~.

Now the left hand side can be expanded as

\begin{align}

\frac{\partial}{\partial \boldsymbol{A}}\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) & =

\frac{\partial}{\partial \boldsymbol{A}}\left[

\lambda^3 + I_1(\boldsymbol{A})~\lambda^2 + I_2(\boldsymbol{A})~\lambda + I_3(\boldsymbol{A}) \right] \\

& =

\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\frac{\partial I_3}{\partial \boldsymbol{A}}~.

\end{align}

Hence

\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\frac{\partial I_3}{\partial \boldsymbol{A}} =

\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\left[(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^{-1}\right]^\textsf{T}

or,

(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^\textsf{T}\cdot\left[

\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\frac{\partial I_3}{\partial \boldsymbol{A}}\right] =

\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\boldsymbol{\mathit{1}} ~.

Expanding the right hand side and separating terms on the left hand side gives

\left(\lambda~\boldsymbol{\mathit{1}} +\boldsymbol{A}^\textsf{T}\right)\cdot\left[

\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\frac{\partial I_3}{\partial \boldsymbol{A}}\right] =

\left[\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]

\boldsymbol{\mathit{1}}

or,

\begin{align}

\left[\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^3 \right.&

\left.+ \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda^2 +

\frac{\partial I_3}{\partial \boldsymbol{A}}~\lambda\right]\boldsymbol{\mathit{1}} +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} \\

& =

\left[\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]

\boldsymbol{\mathit{1}} ~.

\end{align}

If we define I_0 := 1 and I_4 := 0, we can write the above as

\begin{align}

\left[\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^3 \right.&

\left.+ \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda^2 +

\frac{\partial I_3}{\partial \boldsymbol{A}}~\lambda + \frac{\partial I_4}{\partial \boldsymbol{A}}\right]\boldsymbol{\mathit{1}} +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}}~\lambda^3 +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} \\

&=

\left[I_0~\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]

\boldsymbol{\mathit{1}} ~.

\end{align}

Collecting terms containing various powers of λ, we get

\begin{align}

\lambda^3&\left(I_0~\boldsymbol{\mathit{1}} - \frac{\partial I_1}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}}\right) +

\lambda^2\left(I_1~\boldsymbol{\mathit{1}} - \frac{\partial I_2}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}\right) + \\

&\qquad \qquad\lambda\left(I_2~\boldsymbol{\mathit{1}} - \frac{\partial I_3}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}\right) +

\left(I_3~\boldsymbol{\mathit{1}} - \frac{\partial I_4}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -

\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}}\right) = 0 ~.

\end{align}

Then, invoking the arbitrariness of λ, we have

\begin{align}

I_0~\boldsymbol{\mathit{1}} - \frac{\partial I_1}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}} & = 0 \\

I_1~\boldsymbol{\mathit{1}} - \frac{\partial I_2}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - I_2~\boldsymbol{\mathit{1}} - \frac{\partial I_3}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}} & = 0 \\

I_3~\boldsymbol{\mathit{1}} - \frac{\partial I_4}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} & = 0 ~.

\end{align}

This implies that

\begin{align}

\frac{\partial I_1}{\partial \boldsymbol{A}} &= \boldsymbol{\mathit{1}} \\

\frac{\partial I_2}{\partial \boldsymbol{A}} & = I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T} \\

\frac{\partial I_3}{\partial \boldsymbol{A}} & = I_2~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}~\left(I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\right) = \left(\boldsymbol{A}^2 -I_1~\boldsymbol{A} + I_2~\boldsymbol{\mathit{1}}\right)^\textsf{T}

\end{align}

}}

Derivative of the second-order identity tensor

Let \boldsymbol{\mathit{1}} be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensor \boldsymbol{A} is given by

\frac{\partial \boldsymbol{\mathit{1}}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{0}}:\boldsymbol{T} = \boldsymbol{\mathit{0}}

This is because \boldsymbol{\mathit{1}} is independent of \boldsymbol{A}.

Derivative of a second-order tensor with respect to itself

Let \boldsymbol{A} be a second order tensor. Then

\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T} =

\left[\frac{\partial }{\partial \alpha} (\boldsymbol{A} + \alpha~\boldsymbol{T})\right]_{\alpha = 0} =

\boldsymbol{T} =

\boldsymbol{\mathsf{I}}:\boldsymbol{T}

Therefore,

\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}

Here \boldsymbol{\mathsf{I}} is the fourth order identity tensor. In index notation with respect to an orthonormal basis

\boldsymbol{\mathsf{I}} = \delta_{ik}~\delta_{jl}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l

This result implies that

\frac{\partial \boldsymbol{A}^\textsf{T}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{I}}^\textsf{T}:\boldsymbol{T} = \boldsymbol{T}^\textsf{T}

where

\boldsymbol{\mathsf{I}}^\textsf{T} = \delta_{jk}~\delta_{il}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l

Therefore, if the tensor \boldsymbol{A} is symmetric, then the derivative is also symmetric and we get

\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}^{(s)}

= \frac{1}{2}~\left(\boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{I}}^\textsf{T}\right)

where the symmetric fourth order identity tensor is

\boldsymbol{\mathsf{I}}^{(s)} = \frac{1}{2}~(\delta_{ik}~\delta_{jl} + \delta_{il}~\delta_{jk})

~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l

Derivative of the inverse of a second-order tensor

Let \boldsymbol{A} and \boldsymbol{T} be two second order tensors, then

\frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-1}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\cdot\boldsymbol{A}^{-1}

In index notation with respect to an orthonormal basis

\frac{\partial A^{-1}_{ij}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{ik}~T_{kl}~A^{-1}_{lj} \implies \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = - A^{-1}_{ik}~A^{-1}_{lj}

We also have

\frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-\textsf{T}}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-\textsf{T}}\cdot\boldsymbol{T}^\textsf{T}\cdot\boldsymbol{A}^{-\textsf{T}}

In index notation

\frac{\partial A^{-1}_{ji}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{jk}~T_{lk}~A^{-1}_{li} \implies \frac{\partial A^{-1}_{ji}}{\partial A_{kl}} = - A^{-1}_{li}~A^{-1}_{jk}

If the tensor \boldsymbol{A} is symmetric then

\frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = -\cfrac{1}{2}\left(A^{-1}_{ik}~A^{-1}_{jl} + A^{-1}_{il}~A^{-1}_{jk}\right)

{{math proof | proof = Recall that

\frac{\partial \boldsymbol{\mathit{1}}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathit{0}}

Since \boldsymbol{A}^{-1}\cdot\boldsymbol{A} = \boldsymbol{\mathit{1}}, we can write

\frac{\partial }{\partial \boldsymbol{A}}\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{A}\right):\boldsymbol{T} = \boldsymbol{\mathit{0}}

Using the product rule for second order tensors

\frac{\partial }{\partial \boldsymbol{S}}[\boldsymbol{F}_1(\boldsymbol{S})\cdot\boldsymbol{F}_2(\boldsymbol{S})]:\boldsymbol{T} =

\left(\frac{\partial \boldsymbol{F}_1}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)\cdot\boldsymbol{F}_2 +

\boldsymbol{F}_1\cdot\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)

we get

\frac{\partial }{\partial \boldsymbol{A}}(\boldsymbol{A}^{-1}\cdot\boldsymbol{A}):\boldsymbol{T} =

\left(\frac{\partial \boldsymbol{A}^{-1}}{\partial \boldsymbol{A}}:\boldsymbol{T}\right)\cdot\boldsymbol{A} +

\boldsymbol{A}^{-1}\cdot\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T}\right)

= \boldsymbol{\mathit{0}}

or,

\left(\frac{\partial \boldsymbol{A}^{-1}}{\partial \boldsymbol{A}}:\boldsymbol{T}\right)\cdot\boldsymbol{A} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}

Therefore,

\frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-1}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\cdot\boldsymbol{A}^{-1}

}}

Integration by parts

File:StressMeasures.png

Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as

\int_{\Omega} \boldsymbol{F}\otimes\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n} \otimes (\boldsymbol{F}\otimes\boldsymbol{G})\,d\Gamma - \int_{\Omega} \boldsymbol{G}\otimes\boldsymbol{\nabla}\boldsymbol{F}\,d\Omega

where \boldsymbol{F} and \boldsymbol{G} are differentiable tensor fields of arbitrary order, \mathbf{n} is the unit outward normal to the domain over which the tensor fields are defined, \otimes represents a generalized tensor product operator, and \boldsymbol{\nabla} is a generalized gradient operator. When \boldsymbol{F} is equal to the identity tensor, we get the divergence theorem

\int_{\Omega}\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n}\otimes\boldsymbol{G}\,d\Gamma \,.

We can express the formula for integration by parts in Cartesian index notation as

\int_{\Omega} F_{ijk....}\,G_{lmn...,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ijk...}\,G_{lmn...}\,d\Gamma - \int_{\Omega} G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.

For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and both \boldsymbol{F} and \boldsymbol{G} are second order tensors, we have

\int_{\Omega} \boldsymbol{F}\cdot(\boldsymbol{\nabla}\cdot\boldsymbol{G})\,d\Omega = \int_{\Gamma} \mathbf{n}\cdot\left(\boldsymbol{G}\cdot\boldsymbol{F}^\textsf{T}\right)\,d\Gamma - \int_{\Omega} (\boldsymbol{\nabla}\boldsymbol{F}):\boldsymbol{G}^\textsf{T}\,d\Omega \,. evelina

In index notation,

\int_{\Omega} F_{ij}\,G_{pj,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ij}\,G_{pj}\,d\Gamma - \int_{\Omega} G_{pj}\,F_{ij,p}\,d\Omega \,.

See also

References