Tensor derivative (continuum mechanics)
{{Short description|none}}
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.{{ cite book | first1 = J. C. | last1 = Simo | first2 = T. J. R. | last2 = Hughes | year = 1998 | title = Computational Inelasticity | publisher = Springer | isbn = 978-0-387-97520-7 | doi = 10.1007/b98904 }}
The directional derivative provides a systematic way of finding these derivatives.{{ cite book | first1 = Jerrold E. | last1 = Marsden | first2 = Thomas J. R. | last2 = Hughes | year = 2000 | title = Mathematical Foundations of Elasticity | publisher = Dover | isbn = 978-0-486-678658 }}
Derivatives with respect to vectors and second-order tensors
The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.
=Derivatives of scalar valued functions of vectors=
Let f(v) be a real valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) is the vector defined through its dot product with any vector u being
for all vectors u. The above dot product yields a scalar, and if u is a unit vector gives the directional derivative of f at v, in the u direction.
Properties:
- If then
- If then
- If then
=Derivatives of vector valued functions of vectors=
Let f(v) be a vector valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) is the second order tensor defined through its dot product with any vector u being
for all vectors u. The above dot product yields a vector, and if u is a unit vector gives the direction derivative of f at v, in the directional u.
Properties:
- If then
- If then
- If then
=Derivatives of scalar valued functions of second-order tensors=
Let be a real valued function of the second order tensor . Then the derivative of with respect to (or at ) in the direction is the second order tensor defined as
for all second order tensors .
Properties:
- If then
- If then
- If then
=Derivatives of tensor valued functions of second-order tensors=
Let be a second order tensor valued function of the second order tensor . Then the derivative of with respect to (or at ) in the direction is the fourth order tensor defined as
for all second order tensors .
Properties:
- If then
- If then
- If then
- If then
Gradient of a tensor field
The gradient, , of a tensor field in the direction of an arbitrary constant vector c is defined as:
The gradient of a tensor field of order n is a tensor field of order n+1.
= Cartesian coordinates =
{{Einstein_summation_convention}}
If are the basis vectors in a Cartesian coordinate system, with coordinates of points denoted by (), then the gradient of the tensor field is given by
{{math proof | proof = The vectors x and c can be written as and . Let y := x + αc. In that case the gradient is given by
\boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} & = \left.\cfrac{d}{d\alpha}~\boldsymbol{T}(x_1+\alpha c_1, x_2 + \alpha c_2, x_3 + \alpha c_3)\right|_{\alpha=0} \equiv \left.\cfrac{d}{d\alpha}~\boldsymbol{T}(y_1, y_2, y_3)\right|_{\alpha=0} \\
& = \left [\cfrac{\partial{\boldsymbol{T}}}{\partial y_1}~\cfrac{\partial y_1}{\partial \alpha} + \cfrac{\partial{\boldsymbol{T}}}{\partial y_2}~\cfrac{\partial y_2}{\partial \alpha} +
\cfrac{\partial{\boldsymbol{T}}}{\partial y_3}~\cfrac{\partial y_3}{\partial \alpha} \right]_{\alpha=0} =
\left [\cfrac{\partial{\boldsymbol{T}}}{\partial y_1}~c_1 + \cfrac{\partial{\boldsymbol{T}}}{\partial y_2}~c_2 +
\cfrac{\partial{\boldsymbol{T}}}{\partial y_3}~c_3 \right]_{\alpha=0} \\
& = \cfrac{\partial{\boldsymbol{T}}}{\partial x_1}~c_1 + \cfrac{\partial{\boldsymbol{T}}}{\partial x_2}~c_2 +
\cfrac{\partial{\boldsymbol{T}}}{\partial x_3}~c_3 \equiv \cfrac{\partial{\boldsymbol{T}}}{\partial x_i}~c_i = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i}~(\mathbf{e}_i\cdot\mathbf{c})
= \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square
\end{align} }}
Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar field , a vector field v, and a second-order tensor field .
\boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\
\boldsymbol{\nabla}\mathbf{v} & = \cfrac{\partial (v_j \mathbf{e}_j)}{\partial x_i}\otimes\mathbf{e}_i = \cfrac{\partial v_j}{\partial x_i}~\mathbf{e}_j\otimes\mathbf{e}_i = v_{j,i}~\mathbf{e}_j\otimes\mathbf{e}_i \\
\boldsymbol{\nabla}\boldsymbol{S} & = \cfrac{\partial (S_{jk} \mathbf{e}_j\otimes\mathbf{e}_k)}{\partial x_i}\otimes\mathbf{e}_i = \cfrac{\partial S_{jk}}{\partial x_i}~\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_i = S_{jk,i}~\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_i
\end{align}
= Curvilinear coordinates =
{{main|Tensors in curvilinear coordinates}}
{{Einstein_summation_convention}}
If are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (), then the gradient of the tensor field is given by{{ cite book | first = R. W. | last = Ogden | year = 2000 | title = Nonlinear Elastic Deformations | publisher = Dover | isbn = 978-0-486-696485 }}
\boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i
From this definition we have the following relations for the gradients of a scalar field , a vector field v, and a second-order tensor field .
\boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\[1.2ex]
\boldsymbol{\nabla}\mathbf{v} & = \frac{\partial\left(v^j \mathbf{g}_j\right)}{\partial\xi^i}\otimes\mathbf{g}^i \\
&= \left(\frac{\partial v^j}{\partial\xi^i} + v^k~\Gamma_{ik}^j\right)~\mathbf{g}_j\otimes\mathbf{g}^i
= \left(\frac{\partial v_j}{\partial\xi^i} - v_k~\Gamma_{ij}^k\right)~\mathbf{g}^j\otimes\mathbf{g}^i \\[1.2ex]
\boldsymbol{\nabla}\boldsymbol{S} & = \frac{\partial\left(S_{jk}~\mathbf{g}^j\otimes\mathbf{g}^k\right)}{\partial\xi^i}\otimes\mathbf{g}^i \\
&= \left(\frac{\partial S_{jk}}{\partial\xi_i} - S_{lk}~\Gamma_{ij}^l - S_{jl}~\Gamma_{ik}^l\right)~\mathbf{g}^j\otimes\mathbf{g}^k\otimes\mathbf{g}^i
\end{align}
where the Christoffel symbol is defined using
\Gamma_{ij}^k~\mathbf{g}_k = \frac{\partial\mathbf{g}_i}{\partial\xi^j} \quad \implies \quad
\Gamma_{ij}^k = \frac{\partial\mathbf{g}_i}{\partial\xi^j}\cdot\mathbf{g}^k = -\mathbf{g}_i\cdot\frac{\partial \mathbf{g}^k}{\partial\xi^j}
== Cylindrical polar coordinates ==
In cylindrical coordinates, the gradient is given by
\boldsymbol{\nabla}\phi ={}\quad
&\frac{\partial\phi}{\partial r}~\mathbf{e}_r
+ \frac{1}{r}~\frac{\partial \phi}{\partial \theta}~\mathbf{e}_\theta
+ \frac{\partial\phi}{\partial z}~\mathbf{e}_z \\
\end{align}
\boldsymbol{\nabla}\mathbf{v} ={}\quad
&\frac{\partial v_r}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_r
+ \frac{1}{r}\left(\frac{\partial v_r}{\partial\theta} - v_\theta\right)~\mathbf{e}_r \otimes \mathbf{e}_\theta
+ \frac{\partial v_r}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_z \\
{}+{} &\frac{\partial v_\theta}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_r
+ \frac{1}{r}\left(\frac{\partial v_\theta}{\partial\theta} + v_r\right)~\mathbf{e}_\theta \otimes \mathbf{e}_\theta
+ \frac{\partial v_\theta}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_z \\
{}+{} &\frac{\partial v_z}{\partial r}~\mathbf{e}_z\otimes\mathbf{e}_r
+ \frac{1}{r}\frac{\partial v_z}{\partial\theta}~\mathbf{e}_z \otimes\mathbf{e}_\theta
+ \frac{\partial v_z}{\partial z}~\mathbf{e}_z\otimes\mathbf{e}_z \\
\end{align}
\boldsymbol{\nabla}\boldsymbol{S} ={}\quad
&\frac{\partial S_{rr}}{\partial r}~\mathbf{e}_r\otimes\mathbf{e}_r\otimes\mathbf{e}_r
+ \frac{\partial S_{rr}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_r \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{rr}}{\partial\theta} - (S_{\theta r} + S_{r\theta})\right]~\mathbf{e}_r \otimes \mathbf{e}_r\otimes\mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{r\theta}}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r
+ \frac{\partial S_{r\theta}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{r\theta}}{\partial\theta} + (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_r \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{rz}}{\partial r}~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_r
+ \frac{\partial S_{rz}}{\partial z}~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{rz}}{\partial \theta} - S_{\theta z}\right]~\mathbf{e}_r \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{\theta r}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_r
+ \frac{\partial S_{\theta r}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{\theta r}}{\partial\theta} + (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_\theta \otimes \mathbf{e}_r \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{\theta\theta}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r
+ \frac{\partial S_{\theta\theta}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{\theta\theta}}{\partial\theta} + (S_{r\theta} + S_{\theta r})\right]~\mathbf{e}_\theta \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{\theta z}}{\partial r}~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_r
+ \frac{\partial S_{\theta z}}{\partial z}~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{\theta z}}{\partial\theta} + S_{rz}\right]~\mathbf{e}_\theta \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{zr}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_r
+ \frac{\partial S_{zr}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{zr}}{\partial \theta} - S_{z\theta}\right]~\mathbf{e}_z \otimes \mathbf{e}_r \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{z\theta}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_r
+ \frac{\partial S_{z\theta}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_z
+ \frac{1}{r}\left[\frac{\partial S_{z\theta}}{\partial\theta} + S_{zr}\right]~\mathbf{e}_z \otimes \mathbf{e}_\theta \otimes \mathbf{e}_\theta \\
{}+{} &\frac{\partial S_{zz}}{\partial r}~\mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_r
+ \frac{\partial S_{zz}}{\partial z}~\mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_z
+ \frac{1}{r}~\frac{\partial S_{zz}}{\partial\theta}~ \mathbf{e}_z \otimes \mathbf{e}_z \otimes \mathbf{e}_\theta
\end{align}
Divergence of a tensor field
The divergence of a tensor field is defined using the recursive relation
(\boldsymbol{\nabla}\cdot\boldsymbol{T})\cdot\mathbf{c} =
\boldsymbol{\nabla}\cdot\left(\mathbf{c}\cdot\boldsymbol{T}^\textsf{T}\right) ~;\qquad
\boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v})
where c is an arbitrary constant vector and v is a vector field. If is a tensor field of order n > 1 then the divergence of the field is a tensor of order n− 1.
= Cartesian coordinates =
{{Einstein_summation_convention}}
In a Cartesian coordinate system we have the following relations for a vector field v and a second-order tensor field .
\boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\
\boldsymbol{\nabla}\cdot\boldsymbol{S} &= \frac{\partial S_{ik}}{\partial x_i}~\mathbf{e}_k = S_{ik, i}~\mathbf{e}_k
\end{align}
where tensor index notation for partial derivatives is used in the rightmost expressions. Note that
For a symmetric second-order tensor, the divergence is also often written as{{ cite book | last1 = Hjelmstad | first1 = Keith | title = Fundamentals of Structural Mechanics | date = 2004 | publisher = Springer Science & Business Media | isbn = 978-0-387-233307 | page = 45 }}
\boldsymbol{\nabla}\cdot\boldsymbol{S} &= \cfrac{\partial S_{ki}}{\partial x_i}~\mathbf{e}_k = S_{ki,i}~\mathbf{e}_k
\end{align}
The above expression is sometimes used as the definition of
in Cartesian component form (often also written as
). Note that such a definition is not consistent with the rest of this article (see the section on curvilinear co-ordinates).
The difference stems from whether the differentiation is performed with respect to the rows or columns of , and is conventional. This is demonstrated by an example. In a Cartesian coordinate system the second order tensor (matrix) is the gradient of a vector function .
\boldsymbol{\nabla} \cdot \left( \boldsymbol{\nabla} \mathbf{v} \right) &=
\boldsymbol{\nabla} \cdot \left( v_{i,j} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =
v_{i,ji} ~\mathbf{e}_i \cdot \mathbf{e}_i \otimes \mathbf{e}_j =
\left( \boldsymbol{\nabla} \cdot \mathbf{v} \right)_{,j} ~\mathbf{e}_j =
\boldsymbol{\nabla} \left( \boldsymbol{\nabla} \cdot \mathbf{v} \right) \\
\boldsymbol{\nabla} \cdot \left[ \left( \boldsymbol{\nabla} \mathbf{v} \right)^\textsf{T} \right] &=
\boldsymbol{\nabla} \cdot \left( v_{j,i} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =
v_{j,ii} ~\mathbf{e}_i \cdot \mathbf{e}_i \otimes \mathbf{e}_j =
\boldsymbol{\nabla}^{2} v_{j} ~\mathbf{e}_j =
\boldsymbol{\nabla}^{2} \mathbf{v}
\end{align}
The last equation is equivalent to the alternative definition / interpretation
\left( \boldsymbol{\nabla} \cdot \right)_\text{alt} \left( \boldsymbol{\nabla} \mathbf{v} \right) =
\left( \boldsymbol{\nabla} \cdot \right)_\text{alt} \left( v_{i,j} ~\mathbf{e}_i \otimes \mathbf{e}_j \right) =
v_{i,jj} ~\mathbf{e}_i \otimes \mathbf{e}_j \cdot \mathbf{e}_j =
\boldsymbol{\nabla}^2 v_i ~\mathbf{e}_i =
\boldsymbol{\nabla}^2 \mathbf{v}
\end{align}
= Curvilinear coordinates =
{{main|Tensors in curvilinear coordinates}}
{{Einstein_summation_convention}}
In curvilinear coordinates, the divergences of a vector field v and a second-order tensor field are
\boldsymbol{\nabla}\cdot\mathbf{v}
&= \left(\cfrac{\partial v^i}{\partial \xi^i} + v^k~\Gamma_{ik}^i\right)\\
\boldsymbol{\nabla}\cdot\boldsymbol{S}
&= \left(\cfrac{\partial S_{ik}}{\partial \xi_i}- S_{lk}~\Gamma_{ii}^l - S_{il}~\Gamma_{ik}^l\right)~\mathbf{g}^k
\end{align}
More generally,
\boldsymbol{\nabla}\cdot\boldsymbol{S} & = \left[\cfrac{\partial S_{ij}}{\partial q^k} - \Gamma^l_{ki}~S_{lj} - \Gamma^l_{kj}~S_{il}\right]~g^{ik}~\mathbf{b}^j \\[8pt]
& = \left[\cfrac{\partial S^{ij}}{\partial q^i} + \Gamma^i_{il}~S^{lj} + \Gamma^j_{il}~S^{il}\right]~\mathbf{b}_j \\[8pt]
& = \left[\cfrac{\partial S^i_{~j}}{\partial q^i} + \Gamma^i_{il}~S^l_{~j} - \Gamma^l_{ij}~S^i_{~l}\right]~\mathbf{b}^j \\[8pt]
& = \left[\cfrac{\partial S_i^{~j}}{\partial q^k} - \Gamma^l_{ik}~S_l^{~j} + \Gamma^j_{kl}~S_i^{~l}\right]~g^{ik}~\mathbf{b}_j
\end{align}
== Cylindrical polar coordinates ==
In cylindrical polar coordinates
\boldsymbol{\nabla}\cdot\mathbf{v} =\quad
&\frac{\partial v_r}{\partial r}
+ \frac{1}{r}\left(\frac{\partial v_\theta}{\partial\theta} + v_r \right)
+ \frac{\partial v_z}{\partial z}\\
\boldsymbol{\nabla}\cdot\boldsymbol{S} =\quad
&\frac{\partial S_{rr}}{\partial r}~\mathbf{e}_r
+ \frac{\partial S_{r\theta}}{\partial r}~\mathbf{e}_\theta
+ \frac{\partial S_{rz}}{\partial r}~\mathbf{e}_z \\
{}+{} &\frac{1}{r}\left[\frac{\partial S_{\theta r}}{\partial \theta}
+ (S_{rr} - S_{\theta\theta})\right]~\mathbf{e}_r
+ \frac{1}{r}\left[\frac{\partial S_{\theta\theta}}{\partial\theta}
+ (S_{r\theta} + S_{\theta r})\right]~\mathbf{e}_\theta
+ \frac{1}{r}\left[\frac{\partial S_{\theta z}}{\partial\theta} + S_{rz}\right]~\mathbf{e}_z \\
{}+{} &\frac{\partial S_{zr}}{\partial z}~\mathbf{e}_r
+ \frac{\partial S_{z\theta}}{\partial z}~\mathbf{e}_\theta
+ \frac{\partial S_{zz}}{\partial z}~\mathbf{e}_z
\end{align}
Curl of a tensor field
The curl of an order-n > 1 tensor field is also defined using the recursive relation
where c is an arbitrary constant vector and v is a vector field.
= Curl of a first-order tensor (vector) field =
Consider a vector field v and an arbitrary constant vector c. In index notation, the cross product is given by
where is the permutation symbol, otherwise known as the Levi-Civita symbol. Then,
\boldsymbol{\nabla}\cdot(\mathbf{v} \times \mathbf{c}) = \varepsilon_{ijk}~v_{j,i}~c_k = (\varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c}
Therefore,
= Curl of a second-order tensor field =
For a second-order tensor
Hence, using the definition of the curl of a first-order tensor field,
Therefore, we have
= Identities involving the curl of a tensor field =
The most commonly used identity involving the curl of a tensor field, , is
This identity holds for tensor fields of all orders. For the important case of a second-order tensor, , this identity implies that
Derivative of the determinant of a second-order tensor
The derivative of the determinant of a second order tensor is given by
\frac{\partial}{\partial\boldsymbol{A}}\det(\boldsymbol{A}) = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.
In an orthonormal basis, the components of can be written as a matrix A. In that case, the right hand side corresponds the cofactors of the matrix.
{{math proof| proof = Let be a second order tensor and let . Then, from the definition of the derivative of a scalar valued function of a tensor, we have
\frac{\partial f}{\partial\boldsymbol{A}}:\boldsymbol{T} & = \left.\cfrac{d}{d\alpha} \det(\boldsymbol{A} + \alpha~\boldsymbol{T}) \right|_{\alpha=0} \\
& = \left.\cfrac{d}{d\alpha} \det\left[\alpha~\boldsymbol{A}\left(\cfrac{1}{\alpha}~\boldsymbol{\mathit{I}} + \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) \right] \right|_{\alpha=0} \\
& = \left.\cfrac{d}{d\alpha} \left[\alpha^3~\det(\boldsymbol{A})~\det\left(\cfrac{1}{\alpha}~\boldsymbol{\mathit{I}} + \boldsymbol{A}^{-1} \cdot \boldsymbol{T}\right)\right]\right|_{\alpha=0}.
\end{align}
The determinant of a tensor can be expressed in the form of a characteristic equation in terms of the invariants using
Using this expansion we can write
\frac{\partial f}{\partial\boldsymbol{A}}: \boldsymbol{T}
& = \left.\cfrac{d}{d\alpha} \left[\alpha^3~\det(\boldsymbol{A})~\left(
\cfrac{1}{\alpha^3} +
I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\cfrac{1}{\alpha^2} +
I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\cfrac{1}{\alpha} +
I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)
\right) \right] \right|_{\alpha=0} \\
& = \left.\det(\boldsymbol{A})~\cfrac{d}{d\alpha} \left[
1 + I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha +
I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^2 +
I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^3
\right] \right|_{\alpha=0} \\
& = \left.\det(\boldsymbol{A})~\left[
I_1(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}) +
2~I_2\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha +
3~I_3\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right)~\alpha^2
\right] \right|_{\alpha=0} \\
& = \det(\boldsymbol{A})~I_1\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) ~.
\end{align}
Recall that the invariant is given by
Hence,
\frac{\partial f}{\partial\boldsymbol{A}}: \boldsymbol{T} =
\det(\boldsymbol{A})~\text{tr}\left(\boldsymbol{A}^{-1}\cdot\boldsymbol{T}\right) =
\det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} : \boldsymbol{T}.
Invoking the arbitrariness of we then have
\frac{\partial f}{\partial\boldsymbol{A}} = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.
}}
Derivatives of the invariants of a second-order tensor
The principal invariants of a second order tensor are
\begin{align}
I_1(\boldsymbol{A}) & = \text{tr}{\boldsymbol{A}} \\
I_2(\boldsymbol{A}) & = \tfrac{1}{2} \left[ (\text{tr}{\boldsymbol{A}})^2 - \text{tr}{\boldsymbol{A}^2} \right] \\
I_3(\boldsymbol{A}) & = \det(\boldsymbol{A})
\end{align}
The derivatives of these three invariants with respect to are
\frac{\partial I_1}{\partial\boldsymbol{A}} & = \boldsymbol{\mathit{1}} \\[3pt]
\frac{\partial I_2}{\partial\boldsymbol{A}} & = I_1 \, \boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T} \\[3pt]
\frac{\partial I_3}{\partial\boldsymbol{A}} & = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} \\
&= I_2~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}~\left(I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\right)
= \left(\boldsymbol{A}^2 - I_1~\boldsymbol{A} + I_2~\boldsymbol{\mathit{1}}\right)^\textsf{T}
\end{align}
{{math proof | proof = From the derivative of the determinant we know that
\frac{\partial I_3}{\partial \boldsymbol{A}} = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.
For the derivatives of the other two invariants, let us go back to the characteristic equation
\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) =
\lambda^3 + I_1(\boldsymbol{A})~\lambda^2 + I_2(\boldsymbol{A})~\lambda + I_3(\boldsymbol{A}) ~.
Using the same approach as for the determinant of a tensor, we can show that
\frac{\partial }{\partial \boldsymbol{A}}\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) =
\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\left[(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^{-1}\right]^\textsf{T} ~.
Now the left hand side can be expanded as
\begin{align}
\frac{\partial}{\partial \boldsymbol{A}}\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A}) & =
\frac{\partial}{\partial \boldsymbol{A}}\left[
\lambda^3 + I_1(\boldsymbol{A})~\lambda^2 + I_2(\boldsymbol{A})~\lambda + I_3(\boldsymbol{A}) \right] \\
& =
\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\frac{\partial I_3}{\partial \boldsymbol{A}}~.
\end{align}
Hence
\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\frac{\partial I_3}{\partial \boldsymbol{A}} =
\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\left[(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^{-1}\right]^\textsf{T}
or,
(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})^\textsf{T}\cdot\left[
\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\frac{\partial I_3}{\partial \boldsymbol{A}}\right] =
\det(\lambda~\boldsymbol{\mathit{1}} + \boldsymbol{A})~\boldsymbol{\mathit{1}} ~.
Expanding the right hand side and separating terms on the left hand side gives
\left(\lambda~\boldsymbol{\mathit{1}} +\boldsymbol{A}^\textsf{T}\right)\cdot\left[
\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 + \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\frac{\partial I_3}{\partial \boldsymbol{A}}\right] =
\left[\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]
\boldsymbol{\mathit{1}}
or,
\begin{align}
\left[\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^3 \right.&
\left.+ \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda^2 +
\frac{\partial I_3}{\partial \boldsymbol{A}}~\lambda\right]\boldsymbol{\mathit{1}} +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} \\
& =
\left[\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]
\boldsymbol{\mathit{1}} ~.
\end{align}
If we define and , we can write the above as
\begin{align}
\left[\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^3 \right.&
\left.+ \frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda^2 +
\frac{\partial I_3}{\partial \boldsymbol{A}}~\lambda + \frac{\partial I_4}{\partial \boldsymbol{A}}\right]\boldsymbol{\mathit{1}} +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}}~\lambda^3 +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}~\lambda^2 +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}~\lambda +
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} \\
&=
\left[I_0~\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right]
\boldsymbol{\mathit{1}} ~.
\end{align}
Collecting terms containing various powers of λ, we get
\begin{align}
\lambda^3&\left(I_0~\boldsymbol{\mathit{1}} - \frac{\partial I_1}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}}\right) +
\lambda^2\left(I_1~\boldsymbol{\mathit{1}} - \frac{\partial I_2}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_1}{\partial \boldsymbol{A}}\right) + \\
&\qquad \qquad\lambda\left(I_2~\boldsymbol{\mathit{1}} - \frac{\partial I_3}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}}\right) +
\left(I_3~\boldsymbol{\mathit{1}} - \frac{\partial I_4}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} -
\boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}}\right) = 0 ~.
\end{align}
Then, invoking the arbitrariness of λ, we have
I_0~\boldsymbol{\mathit{1}} - \frac{\partial I_1}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_0}{\partial \boldsymbol{A}} & = 0 \\
I_1~\boldsymbol{\mathit{1}} - \frac{\partial I_2}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - I_2~\boldsymbol{\mathit{1}} - \frac{\partial I_3}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_2}{\partial \boldsymbol{A}} & = 0 \\
I_3~\boldsymbol{\mathit{1}} - \frac{\partial I_4}{\partial \boldsymbol{A}}~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\cdot\frac{\partial I_3}{\partial \boldsymbol{A}} & = 0 ~.
\end{align}
This implies that
\frac{\partial I_1}{\partial \boldsymbol{A}} &= \boldsymbol{\mathit{1}} \\
\frac{\partial I_2}{\partial \boldsymbol{A}} & = I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T} \\
\frac{\partial I_3}{\partial \boldsymbol{A}} & = I_2~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}~\left(I_1~\boldsymbol{\mathit{1}} - \boldsymbol{A}^\textsf{T}\right) = \left(\boldsymbol{A}^2 -I_1~\boldsymbol{A} + I_2~\boldsymbol{\mathit{1}}\right)^\textsf{T}
\end{align}
}}
Derivative of the second-order identity tensor
Let be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensor is given by
This is because is independent of .
Derivative of a second-order tensor with respect to itself
Let be a second order tensor. Then
\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T} =
\left[\frac{\partial }{\partial \alpha} (\boldsymbol{A} + \alpha~\boldsymbol{T})\right]_{\alpha = 0} =
\boldsymbol{T} =
\boldsymbol{\mathsf{I}}:\boldsymbol{T}
Therefore,
Here is the fourth order identity tensor. In index notation with respect to an orthonormal basis
\boldsymbol{\mathsf{I}} = \delta_{ik}~\delta_{jl}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
This result implies that
\frac{\partial \boldsymbol{A}^\textsf{T}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{I}}^\textsf{T}:\boldsymbol{T} = \boldsymbol{T}^\textsf{T}
where
Therefore, if the tensor is symmetric, then the derivative is also symmetric and we get
\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}^{(s)}
= \frac{1}{2}~\left(\boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{I}}^\textsf{T}\right)
where the symmetric fourth order identity tensor is
\boldsymbol{\mathsf{I}}^{(s)} = \frac{1}{2}~(\delta_{ik}~\delta_{jl} + \delta_{il}~\delta_{jk})
~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
Derivative of the inverse of a second-order tensor
Let and be two second order tensors, then
\frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-1}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\cdot\boldsymbol{A}^{-1}
In index notation with respect to an orthonormal basis
\frac{\partial A^{-1}_{ij}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{ik}~T_{kl}~A^{-1}_{lj} \implies \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = - A^{-1}_{ik}~A^{-1}_{lj}
We also have
\frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-\textsf{T}}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-\textsf{T}}\cdot\boldsymbol{T}^\textsf{T}\cdot\boldsymbol{A}^{-\textsf{T}}
In index notation
\frac{\partial A^{-1}_{ji}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{jk}~T_{lk}~A^{-1}_{li} \implies \frac{\partial A^{-1}_{ji}}{\partial A_{kl}} = - A^{-1}_{li}~A^{-1}_{jk}
If the tensor is symmetric then
\frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = -\cfrac{1}{2}\left(A^{-1}_{ik}~A^{-1}_{jl} + A^{-1}_{il}~A^{-1}_{jk}\right)
{{math proof | proof = Recall that
Since , we can write
Using the product rule for second order tensors
\frac{\partial }{\partial \boldsymbol{S}}[\boldsymbol{F}_1(\boldsymbol{S})\cdot\boldsymbol{F}_2(\boldsymbol{S})]:\boldsymbol{T} =
\left(\frac{\partial \boldsymbol{F}_1}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)\cdot\boldsymbol{F}_2 +
\boldsymbol{F}_1\cdot\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T}\right)
we get
\frac{\partial }{\partial \boldsymbol{A}}(\boldsymbol{A}^{-1}\cdot\boldsymbol{A}):\boldsymbol{T} =
\left(\frac{\partial \boldsymbol{A}^{-1}}{\partial \boldsymbol{A}}:\boldsymbol{T}\right)\cdot\boldsymbol{A} +
\boldsymbol{A}^{-1}\cdot\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T}\right)
= \boldsymbol{\mathit{0}}
or,
Therefore,
}}
Integration by parts
Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as
\int_{\Omega} \boldsymbol{F}\otimes\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n} \otimes (\boldsymbol{F}\otimes\boldsymbol{G})\,d\Gamma - \int_{\Omega} \boldsymbol{G}\otimes\boldsymbol{\nabla}\boldsymbol{F}\,d\Omega
where and are differentiable tensor fields of arbitrary order, is the unit outward normal to the domain over which the tensor fields are defined, represents a generalized tensor product operator, and is a generalized gradient operator. When is equal to the identity tensor, we get the divergence theorem
We can express the formula for integration by parts in Cartesian index notation as
\int_{\Omega} F_{ijk....}\,G_{lmn...,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ijk...}\,G_{lmn...}\,d\Gamma - \int_{\Omega} G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.
For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and both and are second order tensors, we have
In index notation,