Ter-Antonyan function

{{Orphan|date=January 2021}}

File:Knee shaping function.png

The Ter-Antonyan function parameterizes the energy spectra of primary cosmic rays in the "knee" region (10^{15}-10^{17} eV) by the continuously differentiable function of energy E taking into account the rate of change of spectral slope. The function is expressed as:

{{NumBlk|:|

\frac{dF}{dE} = \Phi E^{-\gamma_1}\left(1+\left(\frac{E}{E_{k}}\right)^{\epsilon}\right)^{\frac{\gamma_1-\gamma_2}{\epsilon}}

,

|{{EquationRef|1}}}}

where \Phi is a scale factor, \gamma_1 and \gamma_2 are the asymptotic slopes of the function (or

spectral slopes) in a logarithmic scale at E\ll E_k and E\gg E_k respectively for a given E_k energy (the so-called "knee" energy). The rate of change of spectral slopes is set in function ({{EquationNote|1}}) by the "sharpness of knee" parameter, \epsilon>0. Function ({{EquationNote|1}}) was proposed in ANI'98 Workshop (1998)

by Samvel Ter-Antonyan

{{cite journal

|author=S.V. Ter-Antonyan, L.S. Haroyan

|date=2000

|title=About EAS size spectra and primary energy spectra in the knee region

|arxiv=hep-ex/0003006

}}

for both the interpolation of primary energy spectra in the energy range 1—100 PeV and the search of parametrized solutions of inverse problem to reconstruct primary cosmic ray energy spectra.

{{cite journal

|author=Samvel Ter-Antonyan

|date=2014

|title=Sharp knee phenomenon of primary cosmic ray energy spectrum

|journal=Physical Review D

|volume=89 |issue=12

|pages=123003

|arxiv=1405.5472

|doi=10.1103/PhysRevD.89.123003

|bibcode = 2014PhRvD..89l3003T |s2cid=118459803

}}

Function ({{EquationNote|1}}) is also used for the interpolation of observed Extensive Air Shower spectra in the knee region.

Function ({{EquationNote|1}}) can be re-written as:

\frac{dF}{dE} = \Phi E^{-\gamma_1}Y(E,\epsilon,\Delta\gamma),

where \Delta\gamma=\gamma_2-\gamma_1 and

Y(E,\epsilon,\Delta\gamma)\equiv\left(1+\left(\frac{E}{E_{k}}\right)^{\epsilon}\right)^{-\frac{\Delta\gamma}{\epsilon}}

is the “knee” shaping function describing the change of the spectral slope. Examples of Y(E,\epsilon,\Delta\gamma=0.5) for \epsilon\equiv0.5, 1, 2, \cdots 500 are presented above.

The rate of change of spectral slope from -\gamma_1 to -\gamma_2 with respect to energy (E) is derived from ({{EquationNote|1}}) as:

\frac{df(E)}{dx}=-\gamma_1-\frac{\Delta\gamma}{1+(E_k/E)^\epsilon},

where

f=\ln\left(\frac{dF}{dE}\right),

x=\ln(\frac{E}{E_k}),

and

\left(\frac{df}{dx}\right)_{E=E_k}=-\frac{\gamma_1+\gamma_2}{2}

is the sharpness-independent spectral slope at the knee energy.

Function ({{EquationNote|1}}) coincides with B. Peters

{{cite journal

|author=B. Peters

|date=1961

|title=Primary cosmic radiation and extensive air showers

|journal=Nuovo Cimento

|volume=22 |issue=4

|pages=800–819

|doi=10.1007/BF02783106

|s2cid=120682656

}}

spectra for \epsilon=1 and

asymptotically approaches the broken power law of cosmic ray energy spectra for \epsilon\gg1:

\left(\frac{dF}{dE}\right)_{\epsilon=\infin}\propto\left(\frac{E}{E_k}\right)^{-\gamma},

where

\gamma=

\begin{cases}

\gamma_1, & \text{if } E

\gamma_2, & \text{if } E>E_k.

\end{cases}

References