Terabit Ethernet#802.3cm project
{{Short description|Ethernet with speeds above 100 Gbit/s}}
{{Use American English|date = March 2019}}
Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE){{Cite web|url=http://www.ieee802.org/3/bs/NGOATH_3bs_Objectives_16_0122.pdf|title=IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives}} standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet{{cite web |url=https://www.theregister.co.uk/2012/09/28/terabit_ethernet_too_fast/ |title=Network boffins say Terabit Ethernet is TOO FAST: Sticking to 400Gb for now|website=The Register }}{{Cite web|url=https://www.fibre-systems.com/feature/board-optics-beyond-pluggables|title=On-board optics: beyond pluggables | Fibre Systems|website=www.fibre-systems.com}} was approved on December 6, 2017.{{Cite web|title=[STDS-802-3-400G] IEEE P802.3bs Approved! |publisher=IEEE 802.3bs Task Force |url=http://www.ieee802.org/3/400GSG/email/msg01519.html |access-date=2017-12-14}}{{cite web |url=http://www.connectorsupplier.com/high-speed-transmission-update-200g400g/|title=High-Speed Transmission Update: 200G/400G
|date=2016-07-18
}} On February 16, 2024 the 800 Gigabit Ethernet (800G, 800GbE) standard developed by the IEEE P802.3df Task Force was approved.{{Cite web |title=[802.3_B400G] IEEE P802.3df Standard Approved! |url=https://www.ieee802.org/3/B400G/email/msg01072.html |access-date=2024-02-25 |website=www.ieee802.org}}
The Optical Internetworking Forum (OIF) has already announced five new projects at 112 Gbit/s which would also make 4th generation (single-lane) 100 GbE links possible.{{cite web |url=http://www.businesswire.com/news/home/20160830005339/en/OIF-Launches-CEI-112G-Project-100G-Serial-Electrical |title=OIF Launches CEI-112G Project for 100G Serial Electrical Links |publisher=Businesswire |date=30 Aug 2016}} The IEEE P802.3df Task Force started work in January 2022 to standardize {{nowrap|800 Gbit/s}} and {{nowrap|1.6 Tbit/s}} Ethernet. {{cite web | url=https://www.ieee802.org/3/df/public/index.html | title=802.3df Public Area }} In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project. The timeline for the 802.3dj project indicates completion in July 2026. {{Cite web | url=https://www.ieee802.org/3/dj/projdoc/timeline_3dj_231128.pdf | title=Adopted IEEE P802.3dj Timeline | date=2023-11-28 | website=www.ieee802.org}}
History
Facebook and Google, among other companies, have expressed a need for TbE.{{cite web
| first = Michael | last = Feldman
| url = http://www.hpcwire.com/2010/02/03/facebook_dreams_of_terabit_ethernet/
| title = Facebook Dreams of Terabit Ethernet | date = February 3, 2010
| work = HPCwire | publisher = Tabor Communications, Inc.
}} While a speed of {{nowrap|400 Gbit/s}} is achievable with existing technology, {{nowrap|1 Tbit/s}} ({{nowrap|1000 Gbit/s}}) would require different technology.{{cite web
| url = http://www.lightreading.com/document.asp?doc_id=188442&
| title = Dare We Aim for Terabit Ethernet?
| work = Light Reading | publisher = UBM TechWeb
| first = Craig | last = Matsumoto
| date = March 5, 2010
}} Accordingly, at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012, 400 GbE was chosen as the next generation goal. Additional 200 GbE objectives were added in January 2016.
The University of California, Santa Barbara (UCSB) attracted help from Agilent Technologies, Google, Intel, Rockwell Collins, and Verizon Communications to help with research into next generation Ethernet.
{{cite web
|title = The Terabit Ethernet Chase Begins
|author = Craig Matsumoto
|publisher = Light Reading
|date = October 26, 2010
|url = http://www.lightreading.com/document.asp?doc_id=199046&
|access-date = December 15, 2011
}}
As of early 2016, chassis/modular based core router platforms from Cisco, Juniper and other major manufacturers support {{nowrap|400 Gbit/s}} full duplex data rates per slot. One, two and four port 100 GbE and one port 400 GbE line cards are presently available. As of early 2019, 200 GbE line cards became available after 802.3cd standard ratification.{{Cite web|url=https://www.cisco.com/c/en/us/solutions/service-provider/index.html|title=Service Provider Network and Technology Services|website=Cisco}}{{Cite web|url=https://networks.nokia.com/press/2015/alcatel-lucent-boosts-operator-capacity-deliver-big-data-and-video-over-existing-networks-launch|title=Alcatel-Lucent boosts operator capacity to deliver big data and video over existing networks with launch of 400G IP router interface}} In 2020 the Ethernet Technology Consortium announced a specification for 800 Gigabit Ethernet.{{cite web | url=https://www.anandtech.com/show/15710/rebranded-ethernet-technology-consortium-unveils-800-gigabit-ethernet | title=Rebranded Ethernet Technology Consortium Unveils 800 Gigabit Ethernet }}
200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle, but at a higher implementation cost.{{Cite web|url=https://www.anandtech.com/show/15978/micron-spills-on-gddr6x-pam4-signaling-for-higher-rates-coming-to-nvidias-rtx-3090|title=Micron Spills on GDDR6X: PAM4 Signaling For Higher Rates, Coming to NVIDIA's RTX 3090|first=Ryan|last=Smith|website=www.anandtech.com}} Cisco introduced an 800G Ethernet switch in 2022.{{cite web | url=https://www.networkworld.com/article/971543/cisco-powers-up-nexus-switch-offers-800gb-optic-modules.html | title=Cisco powers up Nexus switch, offers 800GB optic modules }} In 2024, Nokia routers with 800G Ethernet were deployed.{{cite web | url=https://www.lightwaveonline.com/data-center/article/14303686/nl-ix-deploys-a-range-of-nokia-service-routers | title=NL-ix deploys a range of Nokia service routers | date=16 January 2024 }}
Standards development
The IEEE formed the "IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc", to investigate the business needs for short and long term bandwidth requirements.
{{cite magazine
|title = IEEE Seeks Data on Ethernet Bandwidth Needs
|author = Stephen Lawson
|date = May 9, 2011
|magazine = PC World
|url = http://www.pcworld.com/article/227446/article.html
|access-date = May 23, 2013
}}
{{cite web |title=IEEE Industry Connections Ethernet Bandwidth Assessment |publisher=IEEE 802.3 Ethernet Working Group |date=July 19, 2012 |url=http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf |access-date=2015-03-01 }}
{{cite web
|title = Terabit Ethernet could be on its way
|publisher = Perle
|author = Max Burkhalter Brafton
|date = May 12, 2011
|url = http://www.perle.com/articles/Terabit-Ethernet-could-be-on-its-way-800506465.shtml
|access-date = December 15, 2011
}}
IEEE 802.3's "400 Gb/s Ethernet Study Group" started working on the {{nowrap|400 Gbit/s}} generation standard in March 2013.{{Cite web |title= 400 Gb/s Ethernet Study Group |url= http://www.ieee802.org/3/400GSG/ |work= Group web site |publisher= IEEE 802.3 |access-date = May 23, 2013 }} Results from the study group were published and approved on March 27, 2014. Subsequently, the IEEE 802.3bs Task Force{{Cite web|url=https://www.ieee802.org/3/bs/|title=IEEE P802.3bs 400 Gb/s Ethernet Task Force|website=www.ieee802.org}} started working to provide physical layer specifications for several link distances.{{Cite web |title=Objectives |publisher=IEEE 802.3bs Task Force |date=Mar 2014 |url=http://www.ieee802.org/3/bs/Objectives_14_0320.pdf |access-date=2015-03-01}}
The IEEE 802.3bs standard was approved on December 6, 2017.
The IEEE 802.3cd standard was approved on December 5, 2018.
The IEEE 802.3cn standard was approved on December 20, 2019.
The IEEE 802.3cm standard was approved on January 30, 2020.
The IEEE 802.3cu standard was approved on February 11, 2021.
The IEEE 802.3ck and 802.3db standards were approved on September 21, 2022.
In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project
- [https://www.ieee802.org/3/df/proj_doc/objectives_P802d3df_220317.pdf Original IEEE P802.3df Objectives]
- [https://www.ieee802.org/3/df/proj_doc/objectives_P802d3df_221117.pdf Updated IEEE P802.3df Objectives to reduce scope to 800G Ethernet using 100G physical lanes]
- [https://www.ieee802.org/3/dj/projdoc/objectives_P802d3dj_221117.pdf IEEE P802.3dj Objectives for {{nowrap|1.6 Tbit/s}} Ethernet and PHYs that employ {{nowrap|200 Gbit/s}} lanes]
- [https://www.ieee802.org/3/dj/projdoc/objectives_P802d3dj_230518.pdf IEEE P802.3dj Objectives updated in May 2023 to include 200G/lane backplane Ethernet]
- [https://www.ieee802.org/3/dj/projdoc/objectives_P802d3dj_240125.pdf IEEE P802.3dj Objectives updated in January 2024 to include additional PHY types]
The IEEE 802.3df standard was approved on February 16, 2024.
= IEEE project objectives =
Like all speeds since 10 Gigabit Ethernet, the standards support only full-duplex operation. Other objectives include:
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum frame size of current Ethernet standard
- Support a bit error ratio (BER) of 10−13, which is an improvement over the 10−12 BER that was specified for 10GbE, 40GbE, and 100GbE.
- Support for OTN (transport of Ethernet across optical transport networks), and optional support for Energy-Efficient Ethernet (EEE).
== 802.3bs project ==
Define physical layer specifications supporting:
- {{nowrap|400 Gbit/s}} Ethernet
- at least 100 m over multi-mode fiber (400GBASE-SR16) using 16 parallel strands of fiber each at {{nowrap|25 Gbit/s}}{{Cite web|url=http://www.ieee802.org/3/bs/public/14_11/king_3bs_02a_1114.pdf|title=100 m MMF draft proposal}}{{Cite web|url=http://www.ieee802.org/3/bs/public/14_05/king_3bs_01a_0514.pdf|title=400GBase-SR16 draft specifications}}
- at least 500 m over single-mode fiber (400GBASE-DR4) using 4 parallel strands of fiber each at {{nowrap|100 Gbit/s}}{{Cite web|url=http://www.ieee802.org/3/bs/public/15_07/trowbridge_3bs_03_0715.pdf|title=IEEE 802.3 Ethernet Working Group Liaison letter to ITU-T Questions 6/15 and 11/15}}{{Cite web|url=http://www.ieee802.org/3/bs/public/15_01/welch_3bs_01a_0115.pdf|title=400G-PSM4: A Proposal for the 500 m Objective using {{nowrap|100 Gbit/s}} per Lane Signaling}}
- at least 2 km over single-mode fiber (400GBASE-FR8) using 8 parallel wavelengths (CWDM) each at {{nowrap|50 Gbit/s}}{{Cite web|url=http://www.ieee802.org/3/bs/public/15_07/cole_3bs_01a_0715.pdf|title=400 Gb/s 8x50G PAM4 WDM 2km SMF PMD Baseline Specifications}}{{Cite web|url=http://www.ieee802.org/3/bs/public/15_01/kojima_3bs_01a_0115.pdf|title=Baseline Proposal for 8 x 50G NRZ for 400GbE 2 km and 10 km PMD}}
- at least 10 km over single-mode fiber (400GBASE-LR8) using 8 parallel wavelengths (CWDM) each at {{nowrap|50 Gbit/s}}{{Cite web|url=http://www.ieee802.org/3/bs/public/15_05/ghiasi_3bs_01b_0515.pdf|title=400 GbE technical draft specifications}}
- 8 and 16 lane chip-to-chip/chip-to-module electrical interfaces (400GAUI-8 and 400GAUI-16)
- {{nowrap|200 Gbit/s}} Ethernet
- at least 500 m over single-mode fiber (200GBASE-DR4) using 4 parallel strands of fiber each at {{nowrap|50 Gbit/s}}[http://www.ieee802.org/3/bs/public/16_03/NGOATH_3bs_Objectives_16_0316.pdf IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives] Updated by IEEE 802.3 NGOATH Study Group, Mar 16, 2016, IEEE 802 Mar 2016 Plenary, Macau, China.{{Cite web|url=http://blog.siemon.com/standards/category/ieee/httpblog-siemon-comstandardsp941|title=IEEE 802.3bs 200/400 Gb/s Ethernet (Standards Informant)}}
- at least 2 km over single-mode fiber (200GBASE-FR4) using 4 parallel wavelengths (CWDM) each at {{nowrap|50 Gbit/s}}
- at least 10 km over single-mode fiber (200GBASE-LR4) using 4 parallel wavelengths (CWDM) each at {{nowrap|50 Gbit/s}}
- 4 or 8 lane chip-to-chip/chip-to-module electrical interfaces (200GAUI-4 and 200GAUI-8)
== 802.3cd project ==
- Define four-lane {{nowrap|200 Gbit/s}} PHYs for operation over:
- copper twin-axial cables with lengths up to at least 3 m (200GBASE-CR4).
- printed circuit board backplane with a total channel insertion loss of ≤ 30 dB at 13.28125 GHz (200GBASE-KR4).
- Define {{nowrap|200 Gbit/s}} PHYs for operation over MMF with lengths up to at least 100 m (200GBASE-SR4).
== 802.3ck project ==
- {{nowrap|200 Gbit/s}} Ethernet
- Define a two-lane {{nowrap|200 Gbit/s}} Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on {{nowrap|100 Gbit/s}} per lane optical signaling (200GAUI-2 C2M)
- Define a two-lane {{nowrap|200 Gbit/s}} Attachment Unit Interface (AUI) for chip-to-chip applications (200GAUI-2 C2C)
- Define a two-lane {{nowrap|200 Gbit/s}} PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (200GBASE-KR2)
- Define a two-lane {{nowrap|200 Gbit/s}} PHY for operation over twin axial copper cables with lengths up to at least 2 m (200GBASE-CR2)
- {{nowrap|400 Gbit/s}} Ethernet
- Define a four-lane {{nowrap|400 Gbit/s}} Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on {{nowrap|100 Gbit/s}} per lane optical signaling (400GAUI-4 C2M)
- Define a four-lane {{nowrap|400 Gbit/s}} Attachment Unit Interface (AUI) for chip-to-chip applications (400GAUI-4 C2C)
- Define a four-lane {{nowrap|400 Gbit/s}} PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (400GBASE-KR4)
- Define a four-lane {{nowrap|400 Gbit/s}} PHY for operation over twin axial copper cables with lengths up to at least 2 m (400GBASE-CR4)
== 802.3cm project ==
- {{nowrap|400 Gbit/s}} Ethernet
- Define a physical layer specification supporting {{nowrap|400 Gbit/s}} operation over 8 pairs of MMF with lengths up to at least 100 m (400GBASE-SR8)
- Define a physical layer specification supporting {{nowrap|400 Gbit/s}} operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4.2)
== 802.3cn project ==
- {{nowrap|200 Gbit/s}} Ethernet
- Provide a physical layer specification supporting {{nowrap|200 Gbit/s}} operation over four wavelengths capable of at least 40 km of SMF (200GBASE-ER4) {{Cite web | url=http://www.ieee802.org/3/cn/proj_doc/3cn_Objectives_181113.pdf | title=Adopted Objectives | website=www.ieee802.org}}
- {{nowrap|400 Gbit/s}} Ethernet
- Provide a physical layer specification supporting {{nowrap|400 Gbit/s}} operation over eight wavelengths capable of at least 40 km of SMF (400GBASE-ER8)
== 802.3cu project ==
- Define a four-wavelength {{nowrap|400 Gbit/s}} PHY for operation over SMF with lengths up to at least 2 km (400GBASE-FR4)
- Define a four-wavelength {{nowrap|400 Gbit/s}} PHY for operation over SMF with lengths up to at least 6 km (400GBASE-LR4-6) {{Cite web | url=https://www.ieee802.org/3/cu/Objectives_Approved_Sept_2019.pdf | title=Approved Objectives | website=www.ieee802.org}}
== 802.3cw project ==
- Provide a physical layer specification supporting {{nowrap|400 Gbit/s}} operation on a single wavelength capable of at least 80 km over a DWDM system (400GBASE-ZR){{Cite web | url=http://www.ieee802.org/3/cw/proj_doc/3cw_Objectives_190911.pdf | title=IEEE P802.3cw Adopted Objectives | website=www.ieee802.org}} Dual polarization 16-state quadrature amplitude modulation (DP-16QAM) with coherent detection is proposed.{{Cite web | url=https://www.ieee802.org/3/ct/public/tf_interim/20_0227/dambrosia_3cw_01_200227.pdf | title=Review of Decisions in P802.3ct related to P802.3cw | website=www.ieee802.org}} The project was canceled in 2024.
== 802.3db project ==
- {{nowrap|200 Gbit/s}} Ethernet
- Define a physical layer specification that supports {{nowrap|200 Gbit/s}} operation over 2 pairs of MMF with lengths up to at least 50 m (200GBASE-VR2)
- Define a physical layer specification that supports {{nowrap|200 Gbit/s}} operation over 2 pairs of MMF with lengths up to at least 100 m (200GBASE-SR2)
- {{nowrap|400 Gbit/s}} Ethernet
- Define a physical layer specification that supports {{nowrap|400 Gbit/s}} operation over 4 pairs of MMF with lengths up to at least 50 m (400GBASE-VR4)
- Define a physical layer specification that supports {{nowrap|400 Gbit/s}} operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4)
[https://www.ieee802.org/3/db/P802d3db_Updated_Objectives_Approved_November_2020.pdf 'IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force']
== 802.3df project ==
- Adds 800G Ethernet rate and specifies port types using existing 100G per lane technology
[https://www.ieee802.org/3/df/proj_doc/objectives_P802d3df_221117.pdf IEEE P802.3df Objectives for {{nowrap|800 Gbit/s}} Ethernet and 400G and 800G PHYs using {{nowrap|100 Gbit/s}} lanes]
== 802.3dj project ==
- Adds {{nowrap|1.6 Tbit/s}} Ethernet rate and specifies port types using new {{nowrap|200 Gbit/s}} per lane technology.
- Objectives for {{nowrap|1.6 Tbit/s}} Ethernet and 200, 400 {{nowrap|800 Gbit/s}}, and {{nowrap|1.6 Tbit/s}} PHYs using {{nowrap|200 Gbit/s}} lanes.[https://www.ieee802.org/3/dj/projdoc/objectives_P802d3dj_240314.pdf IEEE P802.3dj]
= 200G port types =
{{Fibre legend}}
class="wikitable" style="line-height:110%;" |
Name
! Standard ! Status ! style="width: 170px;" | Media ! Connector ! Transceiver ! Reach ! # ! # ! # ! Notes |
---|
colspan="11" {{partial|200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: {{nowrap|200 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd |
{{nowrap|200GAUI-8}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs |
colspan="11" {{success|200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: {{nowrap|200 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 |
{{nowrap|200GAUI-4}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs |
{{nowrap|200GBASE-KR4}}
| {{nowrap|802.3cd-2018}} | {{active|current}} | {{terminated|Cu-Backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | 1 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs; |
{{nowrap|200GBASE-CR4}}
| {{nowrap|802.3cd-2018}} | {{active|current}} | {{terminated|twinaxial | {{terminated|QSFP-DD, | align="center" | N/A | style="text-align:right;" | 3 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | Data centres (in-rack) |
rowspan="2" | {{nowrap|200GBASE-SR4}}
| rowspan="2" | {{nowrap|802.3cd-2018}} | rowspan="2" {{active|current}} | rowspan="2" {{CGuest|Fibre | rowspan="2" {{CGuest|MPO/MTP | rowspan="2" align="center" | QSFP56 | style="background-color:#7DF9FF" | {{nowrap|OM3: 70}} | rowspan="2" style="text-align:right;" | 8 | rowspan="2" style="text-align:right;" | 1 | rowspan="2" style="text-align:right;" | 4 | rowspan="2" | uses four fibers in each direction |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
{{nowrap|200GBASE-DR4}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP56 | style="background-color:yellow" | {{nowrap|OS2: 500}} | style="text-align:right;" | 8 | style="text-align:right;" | 1 | style="text-align:right;" | 4 | uses four fibers in each direction |
{{nowrap|200GBASE-FR4}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP56 | style="background-color:yellow" | {{nowrap|OS2: 2k}} | style="text-align:right;" | 2 | style="text-align:right;" | 4 | style="text-align:right;" | 4 | WDM |
{{nowrap|200GBASE-LR4}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP56 | style="background-color:yellow" | {{nowrap|OS2: 10k}} | style="text-align:right;" | 2 | style="text-align:right;" | 4 | style="text-align:right;" | 4 | WDM |
{{nowrap|200GBASE-ER4}}
| {{nowrap|802.3cn-2019}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP56 | style="background-color:yellow" | {{nowrap|OS2: 40k}} | style="text-align:right;" | 2 | style="text-align:right;" | 4 | style="text-align:right;" | 4 | WDM |
colspan="11" {{success|200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: {{nowrap|200 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 |
{{nowrap|200GAUI-2}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | align="center" | N/A | style="text-align:right;" | 0.25 | style="text-align:right;" | 4 | style="text-align:right;" | N/A | style="text-align:right;" | 2 | PCBs |
{{nowrap|200GBASE-KR2}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|Cu backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | 1 | style="text-align:right;" | 4 | style="text-align:right;" | N/A | style="text-align:right;" | 2 | PCBs; |
{{nowrap|200GBASE-CR2}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|twinaxial copper cable}} | {{terminated|QSFP-DD, | align="center" | N/A | style="text-align:right;" | 2 | style="text-align:right;" | 4 | style="text-align:right;" | N/A | style="text-align:right;" | 2 | |
rowspan="2" | {{nowrap|200GBASE-VR2}}
| rowspan="2" | {{nowrap|802.3db-2022}} | rowspan="2" {{active|current}} | rowspan="2" {{CGuest|Fiber | rowspan="2" {{CGuest|MPO | rowspan="2" align="center" | QSFP | style="background-color:#7DF9FF" | {{nowrap|OM3: 30}} | rowspan="2" style="text-align:right;" | 4 | rowspan="2" style="text-align:right;" | 1 | rowspan="2" style="text-align:right;" | 2 | rowspan="2" style="text-align:right;" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 50}} |
rowspan="2" | {{nowrap|200GBASE-SR2}}
| rowspan="2" | {{nowrap|802.3db-2022}} | rowspan="2" {{active|current}} | rowspan="2" {{CGuest|Fiber | rowspan="2" {{CGuest|MPO | rowspan="2" align="center" | QSFP | style="background-color:#7DF9FF" | {{nowrap|OM3: 60}} | rowspan="2" style="text-align:right;" | 4 | rowspan="2" style="text-align:right;" | 1 | rowspan="2" style="text-align:right;" | 2 | rowspan="2" style="text-align:right;" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
colspan="11" {{success|200 Gigabit Ethernet (200 GbE) (4th Generation: 200GbE-based) - (Data rate: {{nowrap|200 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 1x 106.25 GBd x2 |
{{nowrap|200GAUI-1}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Chip-to-chip/ | {{N/A}} | align="center" | N/A | style="text-align:right;" | 0.25 | style="text-align:right;" | 2 | style="text-align:right;" | N/A | style="text-align:right;" | 1 | PCBs |
{{nowrap|200GBASE-KR1}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Cu backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | N/A | style="text-align:right;" | 2 | style="text-align:right;" | N/A | style="text-align:right;" | 1 | PCBs; |
{{nowrap|200GBASE-CR1}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|twinaxial copper cable}} | {{terminated|TBD}} | align="center" | N/A | style="text-align:right;" | 1 | style="text-align:right;" | 2 | style="text-align:right;" | N/A | style="text-align:right;" | 1 | |
{{nowrap|200GBASE-DR1}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{CGuest|Fiber | {{CGuest|TBD}} | align="center" | TBD | style="background-color:#FFFF00" | {{nowrap|OS2: 500}} | style="text-align:right;" | 2 | style="text-align:right;" | 1 | style="text-align:right;" | 1 | style="text-align:right;" | |
= 400G port types =
{{Fibre legend}}
class="wikitable" style="line-height:110%;" |
Name
! Standard ! Status ! style="width: 170px;" | Media ! Connector ! Transceiver ! Reach ! # ! # ! # ! Notes |
---|
colspan="11" {{partial|400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: {{nowrap|400 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd |
{{nowrap|400GAUI-16}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 32 | style="text-align:right;" | N/A | style="text-align:right;" | 16 | PCBs |
rowspan="3" | {{nowrap|400GBASE-SR16}}
| rowspan="3" | {{nowrap|802.3bs-2017}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fibre | rowspan="3" {{CGuest|MPO/MTP | rowspan="3" align="center" | CFP8 | style="background-color:#7DF9FF" | {{nowrap|OM3: 70}} | rowspan="3" align="right" | 32 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 16 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
style="background-color:#66FF00" | {{nowrap|OM5: 100}} |
colspan="11" {{success|400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: {{nowrap|400 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 |
{{nowrap|400GAUI-8}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs |
{{nowrap|400GBASE-KR8}}
| {{partial|proprietary | {{active|current}} | {{terminated|Cu-Backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | 1 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs |
rowspan="3" | {{nowrap|400GBASE-SR8}}
| rowspan="3" | {{nowrap|802.3cm-2020}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fiber | rowspan="3" {{CGuest|MPO/MTP | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 70}} | rowspan="3" align="right" | 16 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 8 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
style="background-color:#66FF00" | {{nowrap|OM5: 100}} |
rowspan="3" | 400GBASE-SR4.2 {{nowrap|(Bidirectional)}} | rowspan="3" | 802.3cm-2020 | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fiber | rowspan="3" {{CGuest|MPO/MTP | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 70}} | rowspan="3" align="right" | 8 | rowspan="3" align="right" | 2 | rowspan="3" align="right" | 8 | rowspan="3" | Bidirectional WDM |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
style="background-color:#66FF00" | {{nowrap|OM5: 150}} |
{{nowrap|400GBASE-FR8}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 2k}} | style="text-align:right;" | 2 | style="text-align:right;" | 8 | style="text-align:right;" | 8 | WDM |
{{nowrap|400GBASE-LR8}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 10k}} | style="text-align:right;" | 2 | style="text-align:right;" | 8 | style="text-align:right;" | 8 | WDM |
{{nowrap|400GBASE-ER8}}
| {{nowrap|802.3cn-2019}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 40k}} | style="text-align:right;" | 2 | style="text-align:right;" | 8 | style="text-align:right;" | 8 | WDM |
colspan="11" {{success|400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: {{nowrap|400 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 |
{{nowrap|400GAUI-4}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs |
{{nowrap|400GBASE-KR4}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|Cu-Backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | 1 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs; |
{{nowrap|400GBASE-CR4}}
| {{nowrap|802.3ck-2022}} | {{active|current}} | {{terminated|twinaxial | {{terminated|QSFP-DD, | align="center" | N/A | style="text-align:right;" | 2 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | Data centres (in-rack) |
rowspan="3" | {{nowrap|400GBASE-VR4}}
| rowspan="3" | {{nowrap|802.3db-2022}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fibre | rowspan="3" {{CGuest|MPO | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 30}} | rowspan="3" align="right" | 8 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 4 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 50}} |
style="background-color:#66FF00" | {{nowrap|OM5: 50}} |
rowspan="3" | {{nowrap|400GBASE-SR4}}
| rowspan="3" | {{nowrap|802.3db-2022}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fibre | rowspan="3" {{CGuest|MPO | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 60}} | rowspan="3" align="right" | 8 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 4 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
style="background-color:#66FF00" | {{nowrap|OM5: 100}} |
{{nowrap|400GBASE-DR4}}
| {{nowrap|802.3bs-2017}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 500}} | style="text-align:right;" | 8 | style="text-align:right;" | 1 | style="text-align:right;" | 4 | |
{{nowrap|400GBASE-DR4-2}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 2k}} | style="text-align:right;" | 8 | style="text-align:right;" | 1 | style="text-align:right;" | 4 | |
{{nowrap|400GBASE-XDR4 400GBASE-DR4+}} | {{partial|proprietary | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OSx: 2k}} | style="text-align:right;" | 8 | style="text-align:right;" | 1 | style="text-align:right;" | 4 | |
{{nowrap|400GBASE-FR4}}
| {{nowrap|802.3cu-2021}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 2k}} | align="right" | 2 | align="right" | 4 | align="right" | 4 |
{{nowrap|400GBASE-LR4-6}}
| {{nowrap|802.3cu-2021}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 6k}} | align="right" | 2 | align="right" | 4 | align="right" | 4 | |
{{nowrap|400GBASE-LR4-10}}
| {{partial|proprietary | {{active|current}} | {{CGuest|Fibre | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OSx: 10k}} | align="right" | 2 | align="right" | 4 | align="right" | 4 |
400GBASE-ZR
| 802.3cw | {{planned|canceled}} | {{CGuest|Fibre}} | {{CGuest|LC}} | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OSx: 80k}} | align="right" | 2 | align="right" | 1 | align="right" | 2 | 59.84375 Gigabaud (DP-16QAM) |
colspan="11" {{success|400 Gigabit Ethernet (400 GbE) (4th Generation: 200GbE-based) - (Data rate: {{nowrap|400 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x2 |
{{nowrap|400GAUI-2}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Chip-to-chip/ | {{N/A}} | align="center" | N/A | style="text-align:right;" | 0.25 | style="text-align:right;" | 2 | style="text-align:right;" | N/A | style="text-align:right;" | 1 | PCBs |
{{nowrap|400GBASE-KR2}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Cu backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | N/A | style="text-align:right;" | 4 | style="text-align:right;" | N/A | style="text-align:right;" | 2 | PCBs; |
{{nowrap|400GBASE-CR2}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|twinaxial copper cable}} | {{terminated|TBD}} | align="center" | N/A | style="text-align:right;" | 1 | style="text-align:right;" | 4 | style="text-align:right;" | N/A | style="text-align:right;" | 2 | |
{{nowrap|400GBASE-DR2}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{CGuest|Fiber | {{CGuest|TBD}} | align="center" | TBD | style="background-color:#FFFF00" | {{nowrap|OS2: 500}} | style="text-align:right;" | 4 | style="text-align:right;" | 1 | style="text-align:right;" | 2 | style="text-align:right;" | |
= 800G port types =
{{Fibre legend}}
class="wikitable" style="line-height:110%;" |
Name
! Standard ! Status ! style="width: 170px;" | Media ! Connector ! Transceiver ! Reach ! # ! # ! # ! Notes |
---|
colspan="11" {{success|800 Gigabit Ethernet (800 GbE) (100GbE-based) - (Data rate: {{nowrap|800 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 53.1250 GBd x2 |
{{nowrap|800GAUI-8}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{terminated|Chip-to-chip/ | {{N/A}} | {{N/A}} | style="text-align:right;" | 0.25 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs |
{{nowrap|800GBASE-KR8}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{terminated|Cu-Backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | 1 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs; |
{{nowrap|800GBASE-CR8}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{terminated|twinaxial | {{terminated|QSFP−DD800 | align="center" | N/A | style="text-align:right;" | 2 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | Data centres (in-rack) |
rowspan="3" | {{nowrap|800GBASE-VR8}}
| rowspan="3" | {{nowrap|802.3df-2024}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fibre | rowspan="3" {{CGuest|MPO | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 30}} | rowspan="3" align="right" | 16 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 8 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 50}} |
style="background-color:#66FF00" | {{nowrap|OM5: 50}} |
rowspan="3" | {{nowrap|800GBASE-SR8}}
| rowspan="3" | {{nowrap|802.3df-2024}} | rowspan="3" {{active|current}} | rowspan="3" {{CGuest|Fibre | rowspan="3" {{CGuest|MPO | rowspan="3" align="center" | QSFP-DD | style="background-color:#7DF9FF" | {{nowrap|OM3: 60}} | rowspan="3" align="right" | 16 | rowspan="3" align="right" | 1 | rowspan="3" align="right" | 8 | rowspan="3" | |
style="background-color:#FF69B4" | {{nowrap|OM4: 100}} |
style="background-color:#66FF00" | {{nowrap|OM5: 100}} |
{{nowrap|800GBASE-DR8}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 500}} | style="text-align:right;" | 16 | style="text-align:right;" | 1 | style="text-align:right;" | 8 | |
{{nowrap|800GBASE-DR8-2}}
| {{nowrap|802.3df-2024}} | {{active|current}} | {{CGuest|Fibre | {{CGuest|MPO/MTP | align="center" | QSFP-DD | style="background-color:yellow" | {{nowrap|OS2: 2k}} | style="text-align:right;" | 16 | style="text-align:right;" | 1 | style="text-align:right;" | 8 |
colspan="11" {{success|800 Gigabit Ethernet (800 GbE) (200GbE-based) - (Data rate: {{nowrap|800 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 106.25 GBd x2 |
{{nowrap|800GAUI-4}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Chip-to-chip/ | {{N/A}} | align="center" | N/A | style="text-align:right;" | 0.25 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs |
{{nowrap|800GBASE-KR4}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Cu backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | N/A | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | PCBs; |
{{nowrap|800GBASE-CR4}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|twinaxial copper cable}} | {{terminated|TBD}} | align="center" | N/A | style="text-align:right;" | 1 | style="text-align:right;" | 8 | style="text-align:right;" | N/A | style="text-align:right;" | 4 | |
{{nowrap|800GBASE-DR4}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{CGuest|Fiber | {{CGuest|TBD}} | align="center" | TBD | style="background-color:#FFFF00" | {{nowrap|OS2: 500}} | style="text-align:right;" | 8 | style="text-align:right;" | 1 | style="text-align:right;" | 4 | style="text-align:right;" | |
= 1.6T port types =
class="wikitable" style="line-height:110%;" |
Name
! Standard ! Status ! style="width: 170px;" | Media ! Connector ! Transceiver ! Reach ! # ! # ! # ! Notes |
---|
colspan="11" {{success|1.6 Terabit Ethernet (1.6 TbE) (200GbE-based) - (Data rate: {{nowrap|1.6 Tbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 106.25 GBd x2 |
{{nowrap|1.6TAUI-8}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Chip-to-chip/ | {{N/A}} | align="center" | N/A | style="text-align:right;" | 0.25 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs |
{{nowrap|1.6TBASE-KR8}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|Cu backplane}} | {{N/A}} | {{N/A}} | style="text-align:right;" | N/A | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | PCBs; |
{{nowrap|1.6TBASE-CR8}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{terminated|twinaxial copper cable}} | {{terminated|TBD}} | align="center" | N/A | style="text-align:right;" | 1 | style="text-align:right;" | 16 | style="text-align:right;" | N/A | style="text-align:right;" | 8 | |
{{nowrap|1.6TBASE-DR8}}
| {{nowrap|802.3dj}} | {{planned|development}} | {{CGuest|Fiber | {{CGuest|TBD}} | align="center" | TBD | style="background-color:#FFFF00" | {{nowrap|OS2: 500}} | style="text-align:right;" | 16 | style="text-align:right;" | 1 | style="text-align:right;" | 8 | style="text-align:right;" | |
See also
References
{{reflist|30em}}
Further reading
- {{cite web
|title = Researchers to develop 1 Terabit Ethernet by 2015
|publisher = ZD Net
|author = Chris Jablonski
|url = http://www.zdnet.com/blog/emergingtech/researchers-to-develop-1-terabit-ethernet-by-2015/2397
|archive-url = https://web.archive.org/web/20101029201653/http://www.zdnet.com/blog/emergingtech/researchers-to-develop-1-terabit-ethernet-by-2015/2397
|url-status = dead
|archive-date = October 29, 2010
|access-date = October 9, 2011
}}
- {{cite web
|title = Speed matters: how Ethernet went from 3 Mbps to 100 Gbps... and beyond
|website = Ars Technica
|author = Iljitsch van Beijnum
|date=August 2011
|url = https://arstechnica.com/gadgets/news/2011/07/ethernet-how-does-it-work.ars/1
|access-date = October 9, 2011
}}
- {{cite news
|title = IEEE Looks beyond 100G Ethernet
|publisher = The Cutting Edge
|author = Rick Merritt
|date = May 9, 2011
|url = http://www.thecuttingedgenews.com/index.php?article=52002&pageid=28&pagename=Sci-Tech
|access-date = October 9, 2011
}}
- {{cite magazine
|title = Facebook Sees Need for Terabit Ethernet
|author = Stephen Lawson
|magazine = PC World
|date = February 2, 2010
|url = https://www.pcworld.com/article/188412/facebook_sees_need_for_terabit_ethernet.html
|access-date = December 15, 2011
}}
- IEEE Reports
- {{cite journal
|title = 100 gigabit Ethernet and beyond
|journal = IEEE Optical Communications: Design, Technologies, and Applications
|date = March 2010
|volume = 48
|issue = 3
|issn = 0163-6804
|doi = 10.1109/MCOM.2010.5434372
|last1 = D'Ambrosia
|first1 = John
}}
- {{cite book
|chapter = The drive towards Terabit Ethernet
|date = July 2011
|isbn = 978-1-4244-5730-4
|doi = 10.1109/PHOSST.2011.6000067
|title = 2011 IEEE Photonics Society Summer Topical Meeting Series
|pages = 104–105
|last1 = Elby
|first1 = Stuart
|s2cid = 9077455
}}
- {{cite book
|chapter = DQPSK for Terabit Ethernet in the 1310 nm band
|date = July 2011
|isbn = 978-1-4244-5730-4
|doi = 10.1109/PHOSST.2011.6000087
|title = 2011 IEEE Photonics Society Summer Topical Meeting Series
|pages = 143–144
|last1 = Detwiler
|first1 = Thomas
|last2 = Stark
|first2 = Andrew
|last3 = Basch
|first3 = Bert
|last4 = Ralph
|first4 = Stephen E.
|s2cid = 44199212
}}
External links
- {{cite web
| url = http://insidehpc.com/2009/04/03/terabit-ethernet-on-the-way/
| title = Terabit Ethernet on the way | date = April 3, 2009
| first = John | last = West | work = insideHPC
}}
- {{cite web
| url = https://www.theregister.co.uk/2009/02/16/terabit_ethernet_optics/
| title = Terabit Ethernet possibilities | date = February 15, 2009
| first = Chris | last = Mellor | work = The Register
}}
- {{cite web
| url = http://nextbigfuture.com/2008/04/terabit-ethernet-around-2015.html
| title = Terabit Ethernet around 2015 | date = April 24, 2008
| first = Brian | last = Wang
}}
- {{cite web
|url = http://www.networkworld.com/news/2009/042009-terabit-ethernet.html
|title = 100 Gigabit Ethernet: Bridge to Terabit Ethernet
|date = April 20, 2009
|first = Jim
|last = Duffy
|work = Network World
|url-status = dead
|archive-url = https://web.archive.org/web/20100514081516/http://www.networkworld.com/news/2009/042009-terabit-ethernet.html
|archive-date = May 14, 2010
}}
- {{cite web
| url = https://arstechnica.com/science/news/2009/02/terabit-ethernet-becomes-a-photonic-possibility.ars
| title = Terabit Ethernet becomes a photonic possibility | date = February 13, 2009
| first = Glenn | last = Fleishman
| work = Ars Technica | publisher = Condé Nast
}}
- {{cite web
| url = https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
| title = IEEE GET Program - GET 802(R) Standards
| publisher = IEEE Standards Association
}}
{{Ethernet}}