TerraPower#Sodium fast reactor (Natrium)

{{short description|Nuclear reactor design company}}

{{Update|talk=Current projects|date=January 2022}}

{{Use mdy dates|date=May 2023}}

{{Infobox company|

| name = TerraPower, LLC

| logo = Image:TerraPower Logo.png

| type = Private

| foundation = 2006

| founder = Bill Gates

| location_city = Bellevue, Washington

| location_country = United States

| key_people = Bill Gates
{{small|(Chairman)}}
Chris Levesque
{{small|(President & CEO)}}

| industry = Nuclear power

| products = Natrium Sodium-Cooled Fast Reactor, Molten Chloride Fast Reactor, Traveling wave reactor

| website = {{URL|terrapower.com}}

}}

{{Bill Gates series}}

TerraPower is an American nuclear reactor design and development engineering company headquartered in Bellevue, Washington.

TerraPower is developing a class of nuclear fast reactors termed traveling wave reactors (TWR).[http://www.moneycontrol.com/news/business/ril-buys-stakeus-based-terra-power_637733.html RIL buys stake in US's Terra Power ] {{Webarchive|url=https://web.archive.org/web/20160817114020/http://www.moneycontrol.com/news/business/ril-buys-stakeus-based-terra-power_637733.html |date=August 17, 2016 }}, www.moneycontrol.com

Description

TWR places a small core of the enriched fuel in the center of a much larger mass of non-fissile material, in this case depleted uranium. Neutrons from the fission in the core "breeds" new fissile material in the surrounding mass, producing Plutonium-239.

Over time, enough fuel is bred in the area surrounding the core that it can undergo fission, enabling a steady-state reactor composition to be approximated by moving outer fuel rods towards the core as original core fuel rods are moved to the periphery.

Natrium uses liquid sodium as a coolant, reducing the cost of using an ambient pressure primary loop. It then transfers that heat to molten salt, which can be stored in tanks and used to generate steam on demand, enabling the reactor to run continuously at constant power, while allowing dispatchable electricity generation.{{cite journal |last1=Cho |first1=Adrian |title=Department of Energy picks two advanced nuclear reactors for demonstration projects |journal=Science |date=16 October 2020 |doi=10.1126/science.abf2992 |quote=DOE will split the total cost of building each plant with private industry. Each project receives $80 million this year and could receive a total of between $400 million and $4 billion in funding over the next 5 to 7 years... Instead of water, the 345 megawatt Natrium reactor from TerraPower, Inc., and GE Hitachi would use molten sodium metal as a coolant. Because sodium has a much higher boiling temperature than water, the coolant would not have to be pressurized, reducing the plant's complexity and cost. The sodium would transfer its heat to molten salt, which could then flow directly to a steam generator or to a storage tank, to be held to generate steam and electricity later... Because Natrium sodium coolant is unpressurized, the reactor requires a smaller containment structure than a conventional reactor. The plant also 'decouples' the reactor and the electricity generating portions of the facility, which sit on opposite sides of the storage tanks. }}

History

In September 2015 TerraPower signed an agreement with state-owned China National Nuclear Corporation to build a prototype 600 MWe reactor unit at Xiapu in Fujian province, China, from 2018 to 2025.{{cite web |url=http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |title=Fast Neutron Reactors |date=September 2016 |publisher=World Nuclear Association |access-date=October 26, 2016 |archive-date=December 23, 2017 |archive-url=https://web.archive.org/web/20171223183305/http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |url-status=live }} Commercial power plants, generating about 1150 MWe, were planned for the late 2020s.{{cite news |url=http://www.world-nuclear-news.org/NN-TerraPower-CNNC-team-up-on-travelling-wave-reactor-25091501.html |title=TerraPower, CNNC team up on travelling wave reactor |date=25 September 2015 |newspaper=World Nuclear News |archive-date=December 1, 2017 |access-date=October 26, 2016 |archive-url=https://web.archive.org/web/20171201035837/http://www.world-nuclear-news.org/NN-TerraPower-CNNC-team-up-on-travelling-wave-reactor-25091501.html |url-status=live }} In January 2019 it was announced that the project had been abandoned due to technology transfer limitations placed by the Trump administration.{{cite news |url=https://www.caixinglobal.com/2019-01-05/nuclear-power-trial-in-china-will-not-proceed-101366789.html |title=Nuclear Power Trial in China Will 'Not Proceed' |date=5 January 2019 |newspaper=Caixin |first1=Chen |last1=Xuewan |first2=Mo |last2=Yelin |first3=Jason |last3=Tan |first4=Tao |last4=Ziwei}}

In October 2020, the company was chosen by the United States Department of Energy as a recipient of a matching grant totaling between $400 million and $4 billion over the ensuing 5 to 7 years to build a demonstration reactor using their Natrium design.{{r|SM_2020-10}}

In June 2021, TerraPower and PacifiCorp, a subsidiary of Warren Buffett's Berkshire Hathaway Energy, announced plans to build a joint Natrium reactor.{{Cite web|agency=Reuters|date=2021-06-03|title=Bill Gates and Warren Buffett to build new kind of nuclear reactor in Wyoming|url=http://www.theguardian.com/us-news/2021/jun/03/bill-gates-warren-buffett-new-nuclear-reactor-wyoming-natrium|access-date=2021-06-03|website=the Guardian|language=en}}

Four cities in Wyoming were under consideration for the demonstration reaction that were affected by the closure of fossil-fuel power plants: Gillette, Kemmerer, Glenrock and Rock Springs.{{cite news |title=Will Wyoming Embrace Nuclear Power? |url=https://nuclearstreet.com/nuclear_power_industry_news/b/nuclear_power_news/archive/2021/06/09/will-wyoming-embrace-nuclear-power_3f00_-060901#.YMILbC1h1rR |access-date=June 10, 2021 |work=Nuclear Street |date=June 9, 2021}} PacificCorp does business in Wyoming as Rocky Mountain Power and has a coal power plant in each of the candidate locations.{{cite news |author1=Greg Johnson |title=Wyoming to be home to 'game-changing' nuclear power plant |url=https://www.gillettenewsrecord.com/news/local/article_c39d8dae-2243-5130-9e98-52cc3828f0ee.html |access-date=June 10, 2021 |work=Gillette News Record |date=June 2, 2021 |quote=In cooperation with PacifiCorp and Rocky Mountain Power, the nuclear reactor will replace a Wyoming coal-fired plant upon retirement. A specific location hasn't been determined, but it will be at one of our Rocky Mountain Power's plants in Wyoming: the Jim Bridger plant near Rock Springs, the Dave Johnston plant near Glenrock, the Naughton plant at Kemmerer or the Wyodak plant near Gillette. |archive-date=June 9, 2021 |archive-url=https://web.archive.org/web/20210609221550/https://www.gillettenewsrecord.com/news/local/article_c39d8dae-2243-5130-9e98-52cc3828f0ee.html |url-status=live }} It was announced November 16, 2021 that Kemmerer had been selected.{{cite news |author1=TerraPower |title=TerraPower selects Kemmerer, Wyoming as the preferred site for advanced reactor demonstration plant |url=https://nuclearstreet.com/nuclear-power-suppliers-companies-equipment-parts/b/weblog/archive/2021/11/17/terrapower-selects-kemmerer-wyoming-as-the-preferred-site-for-advanced-reactor-demonstration-plant#.YZZubC-B1rR |access-date=November 18, 2021 |work=Nuclear Street |date=November 17, 2021 |format=Press release}}

{{anchor|Kemmerer Nuclear Power Plant}}

In 2024, TerraPower selected Kemmerer as the site for a 345 MWe Natrium reactor using a molten salt energy storage system. The reactor can temporarily boost output to 500 MWe, enabling the plant to integrate with renewable resources.{{Cite web |last=Wang |first=Brian |date=2022-08-30 |title=Korea Invests in Bill Gates TerraPower {{!}} NextBigFuture.com |url=https://www.nextbigfuture.com/2022/08/korea-invests-in-bill-gates-terrapower.html |access-date=2022-09-26 |language=en-US}} The power station is designed to consist of two adjacent parts: an "energy island" and a "nuclear island".{{r|BreakingGroundGatesNotes}} In June 2024 the site broke ground, beginning preparation for the as-yet unapproved reactor.{{Cite news |last=McDermott |first=Jennifer |date=2024-06-10 |title=In Wyoming, Bill Gates moves ahead with nuclear project aimed at revolutionizing power generation |url=https://apnews.com/article/bill-gates-nuclear-terrapower-wyoming-climate-change-electricity-23176f33200b22b9ede7f4ccf4f2ec3b |access-date=2024-06-11 |work=AP News |language=en}}{{cite news |author1=Bill Gates |title=We just broke ground on America's first next-gen nuclear facility |url=https://www.gatesnotes.com/Wyoming-TerraPower-groundbreaking |access-date=2024-09-29 |work=GatesNotes |date=June 10, 2024 |format=Press release |archive-date=October 2, 2024 |archive-url=https://web.archive.org/web/20241002182638/https://www.gatesnotes.com/Wyoming-TerraPower-groundbreaking |url-status=live }} Construction of a "nuclear island" is planned to begin in 2026. The commercial power plant could be operational by 2030.{{Cite web |last=Pollack |first=Nicole |date=May 5, 2023 |title=Bill Gates introduces himself to Kemmerer, Wyoming |url=https://trib.com/business/energy/bill-gates-introduces-himself-to-kemmerer-wyoming/article_bcafa876-eb9e-11ed-b583-4365e8a5a6e1.html |access-date=2023-05-06 |website=Casper Star-Tribune Online |language=en}}

It is estimated to cost $4 billion, with the DOE supplying half of that cost, and Gates contributing $1 billion.{{cite news | url=https://www.npr.org/2024/06/14/nx-s1-5002007/bill-gates-nuclear-power-artificial-intelligence | title=Bill Gates is going nuclear: How his latest project could power U.S. homes and AI | last1=Manuel | first1=Obed | last2=Innskeep | first2=Steve | newspaper=NPR | date=2024-06-14 | quote=Gates has invested $1 billion into a nuclear power plant that broke ground in Kemmerer, Wyo., this week. The new facility, designed by the Gates-founded TerraPower, will be smaller than traditional fission nuclear power plants and, in theory, safer because it will use sodium instead of water to cool the reactor's core. TerraPower estimates the plant could be built for up to $4 billion,... | archive-date=June 17, 2024 | access-date=June 17, 2024 | archive-url=https://web.archive.org/web/20240617045618/https://www.npr.org/2024/06/14/nx-s1-5002007/bill-gates-nuclear-power-artificial-intelligence | url-status=live }}

In April 2025, TerraPower notified the British Office for Nuclear Regulation that it intends to enter the Generic Design Assessment process for its Natrium reactor.{{cite news |url=https://www.world-nuclear-news.org/articles/terrapower-begins-uk-design-assessment-process |title=TerraPower begins UK design assessment process |website=World Nuclear News |date=17 April 2025 |access-date=18 April 2025}}

Funding and management

TerraPower is partly funded by the US Department of Energy/DOE and Los Alamos National Laboratory.{{cite journal|last=Delacruz|first=Vanessa|title=Fiscal Year 2012 Institutional Commitments Midyear Progress Report|journal=Energy Citation Database|date=August 2012|pages=1–37|url=http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-12-23922|accessdate=19 August 2012}} One of TerraPower's primary investors is Bill Gates, via the Cascade Investment. Others include Charles River Ventures and Khosla Ventures, which reportedly invested $35 million in 2010.

TerraPower is led by chief executive officer Chris Levesque. In December 2011 India's Reliance Industries bought a minority stake through one of its subsidiaries and its Chairman Mukesh Ambani joined the board. Other TerraPower participants include[http://www.terrapower.com/WhoWeAre/Leadership.aspx TerraPower Team Bios] {{Webarchive|url=https://web.archive.org/web/20120103133845/http://www.terrapower.com/WhoWeAre/Leadership.aspx |date=January 3, 2012 }}, www.TerraPower.com scientists and engineers from Lawrence Livermore National Laboratory, the Fast Flux Test Facility, Microsoft, and various universities, as well as managers from Siemens, Areva NP, the ITER project, Ango Systems Corporation and DOE.

SK Group agreed to invest $250 million in 2022. The round was co-led by SK Inc and SK Innovation and Gates. DOE gave TerraPower cost-share funding through the Advanced Reactor Demonstration Program (ARDP) to test, license and build an advanced reactor within seven years.

Company objectives include:[http://www.nuc.berkeley.edu/node/1077 The TerraPower Initiative] {{Webarchive|url=https://web.archive.org/web/20090731023254/http://www.nuc.berkeley.edu/node/1077 |date=2009-07-31 }}, berkeley.edu

  • Exploring significant improvements to nuclear power using 21st century technologies, state-of-the-art computational capabilities and expanded data.
  • Evaluating the impact of new concepts on the fuel cycle, from mining to spent fuel disposal.
  • Pursuing independent private funding.

Designs

= Traveling wave reactor =

TerraPower chose traveling wave reactors (TWRs) as its primary technology. Their major benefit is high fuel utilization that does not require nuclear reprocessing and could eliminate the need to enrich uranium.{{cite news | first= Matthew L. | last= Wald | title= TR10: Traveling-Wave Reactor | publisher= Technology Review | date= 2009-02-24 | url= https://www.technologyreview.com/video/606131/tr10-traveling-wave-reactor/ | accessdate= 2019-01-30 | archive-date= November 9, 2018 | archive-url= https://web.archive.org/web/20181109045524/https://www.technologyreview.com/video/606131/tr10-traveling-wave-reactor/ | url-status= live }} TWRs are designed to convert typically non-fissile fertile nuclides (U-238) into fissile nuclides (Pu-239) in-situ and then shift power production from the "burned" region to the "bred" region. This allows the benefits of a closed fuel cycle without the expense and proliferation-risk of enrichment/reprocessing plants. Enough fuel for between 40 and 60 years of operation could be included in the reactor during manufacturing. The reactor could be installed below ground, where it could operate for an estimated 100 years.{{cite news | last= Gurth | first= Robert | title= A Window Into the Nuclear Future | newspaper= The Wall Street Journal | date= February 27, 2011 | url= https://www.wsj.com/articles/SB10001424052748704409004576146061231899264 | archive-url=https://web.archive.org/web/20150122053556/https://www.wsj.com/articles/SB10001424052748704409004576146061231899264 | archive-date=Jan 22, 2015 | accessdate= 19 August 2012}} TerraPower described its reactor design as a Generation IV design.{{cite web | title = The Design | website = TerraPower | url = http://terrapower.com/pages/design | accessdate = 2016-12-23 | archive-date = December 23, 2016 | archive-url = https://web.archive.org/web/20161223201847/http://terrapower.com/pages/design | url-status = dead }}

== Environmental effects ==

By using depleted uranium as fuel, the new reactor type could reduce depleted uranium stockpiles.{{cite journal|last=Michal|first=Rick|author2=Michael Blake|title=The nuclear news interview. John Gilleland. On the traveling-wave reactor|journal=Internationale Zeitschrift für Kernenergie|date=April 2010|volume=41|issue=25|pages=249–252|url=http://inis.iaea.org/search/cache?q=cache:eAKP2lW6cwgJ:www.iaea.org/inis/collection/NCLCollectionStore/_Bib/41/067/41067902.txt+terrapower&access=p&output=xml_no_dtd&client=inis&getfields=*&ie=UTF-8&filter=p&site=inis&num=10&oe=ISO-8859-1&proxystylesheet=inis|accessdate=19 August 2012|ref=41067902|archive-date=January 30, 2016|archive-url=https://web.archive.org/web/20160130190235/https://inis.iaea.org/search/cache?q=cache%3AeAKP2lW6cwgJ%3Awww.iaea.org%2Finis%2Fcollection%2FNCLCollectionStore%2F_Bib%2F41%2F067%2F41067902.txt+terrapower&access=p&output=xml_no_dtd&client=inis&getfields=%2A&ie=UTF-8&filter=p&site=inis&num=10&oe=ISO-8859-1&proxystylesheet=inis|url-status=dead}} TerraPower notes that the US harbors 700,000 metric tons of depleted uranium and that 320 metric tons could power 100 million homes for a year.{{cite web|title=Depleted Uranium as Fuel Cuts Path to Less Waste|url=http://www.terrapower.com/Technology/TravelingWaveReactor.aspx|publisher=Intellectual Ventures Management, LLC|accessdate=19 August 2012|archive-date=April 13, 2012|archive-url=https://web.archive.org/web/20120413221044/http://www.terrapower.com/Technology/TravelingWaveReactor.aspx|url-status=dead}} Reports claim that TWR's high fuel efficiency, combined with the ability to use uranium recovered from river or sea water, means enough fuel is available to generate electricity for 10 billion people at US per capita consumption levels over million-year time-scales.{{cite journal|last=Ellis|first=T.|display-authors=etal |title=Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs|journal=Proceedings of ICAPP '10 |year=2010 |isbn=978-0-89448-081-2 |pages=546–558|id=Paper 10189 |url=https://www.researchgate.net/publication/286948588}}

== Research and development ==

The TWR design is still in research and development. The conceptual framework was simulated by supercomputers with empirical evidence for theoretical feasibility. On November 6, 2009, TerraPower executives and Bill Gates visited Toshiba's Yokohama and Keihin Factories in Japan, and concluded a non-disclosure agreement with them on December 1.[http://news.smh.com.au/breaking-news-world/bill-gates-toshiba-in-early-talks-on-nuclear-reactor-20100323-qspe.html Bill Gates, Toshiba in early talks on nuclear reactor] {{Webarchive|url=https://web.archive.org/web/20140316124743/http://news.smh.com.au/breaking-news-world/bill-gates-toshiba-in-early-talks-on-nuclear-reactor-20100323-qspe.html |date=March 16, 2014 }}, Sydney Morning Herald, March 23, 2010{{cite web|url=http://www.nikkei.com/biz/focus/article/g=96958A9C93819499E0E0E2E39E8DE0E0E2E1E0E2E3E2E2E2E2E2E2E2;p=9694E3E4E3E0E0E2E2EBE0E0E4E3|title=ゲイツ、原発挑戦の真相|publisher=The Nikkei|date=2010-03-23|accessdate=2010-03-24}} Toshiba had developed an ultracompact reactor, the 4S, that could operate for 30 years without fuel handling and generated 10 megawatts.{{Cite web|url=http://sankei.jp.msn.com/economy/business/100323/biz1003230947002-n1.htm|title=東芝、ゲイツ氏と次世代原発開発へ 維持コスト管理を低減|publisher=The Sankei Simbun|date=2010-03-23|accessdate=2010-03-25|url-status=dead|archive-url=https://web.archive.org/web/20100326123034/http://sankei.jp.msn.com/economy/business/100323/biz1003230947002-n1.htm|archive-date=2010-03-26}}{{Cite web|url=http://www.mainichi.jp/select/biz/archive/news/2010/03/23/20100323dde007020070000c.html|title=次世代原子炉:100年連続運転の開発、ゲイツ氏が東芝とタッグ 私財数千億円投じ|publisher=Mainichi Newspapers|date=2010-03-23|accessdate=2010-03-24}} {{Dead link|date=October 2010|bot=H3llBot}}{{Cite web|url=http://www.asahi.com/business/update/0323/TKY201003230458.html |title=ゲイツ氏と東芝、原発開発でタッグ? 米企業が協力要請 |publisher=The Asahi Simbun |date=2010-03-24 |accessdate=2010-03-24 |url-status=dead |archive-url=https://web.archive.org/web/20100326011442/http://www.asahi.com/business/update/0323/TKY201003230458.html |archive-date=March 26, 2010 }} Some of the 4S technologies are considered to be transferable to TWRs.

= Molten salt reactor =

In October 2015 the company was reported to be investigating a molten salt reactor design with Southern Company as a technology alternative.{{cite news | title = Southern Company and TerraPower Prep for Testing on Molten Salt Reactor | publisher=United States Department of Energy | url=https://www.energy.gov/ne/articles/southern-company-and-terrapower-prep-testing-molten-salt-reactor}}{{cite news | first= Richard | last= Martin | title= TerraPower Quietly Explores New Nuclear Reactor Strategy | publisher= Technology Review | date= 2015-10-21 | url= https://www.technologyreview.com/2015/10/21/165489/terrapower-quietly-explores-new-nuclear-reactor-strategy/ | accessdate= 2020-09-20 | archive-date= June 4, 2023 | archive-url= https://web.archive.org/web/20230604005210/https://www.technologyreview.com/2015/10/21/165489/terrapower-quietly-explores-new-nuclear-reactor-strategy/ | url-status= live }} In February 2022, it was announced that the two companies had agreed to build a demonstration fast-spectrum salt reactor at Idaho National Laboratory (INL).{{Cite web |date=28 February 2022 |title=TerraPower and Southern Company to demonstrate molten salt reactor |url=https://www.neimagazine.com/news/newsterrapower-and-southern-company-to-demonstrate-molten-salt-reactor-9513910 |website=Nuclear Engineering International}}

In 2023, the US Department of Energy announced a project to build a test reactor using high-enriched fuel (HEU) containing as much as 90% {{Chem|235|U}}, contradicting the country's longer-term project to remove HEU from all reactors.{{Cite web |last=Cho |first=Adrian |date=23 May 2023 |title=U.S. planning test reactor to run on weapons-grade uranium |url=https://www.science.org/content/article/u-s-planning-test-reactor-run-weapons-grade-uranium |access-date=2023-06-05 |website=www.science.org |language=en}}

= Sodium fast reactor (Natrium) =

{{anchor|natrium}}

Natrium combines a molten sodium reactor with a 1 GWh molten salt energy storage system. Sodium offers a 785-Kelvin temperature range between its solid and gaseous states, nearly 8x that of water's 100-Kelvin range. Without requiring costly and risky pressurization, sodium can absorb large amounts of heat. It is not at risk of decomposition at high temperature as water does.

Natrium primarily uses austenitic stainless steels for components in contact with molten sodium, due to the nature of the components involved a protective oxide layer is formed on the steels in the presence of the sodium, inhibiting further corrosion.{{cite journal |last1=Bonk |first1=Alexander |last2=Braun |first2=Markus |last3=Sötz |first3=Veronika A. |last4=Bauer |first4=Thomas |title=Solar Salt – Pushing an old material for energy storage to a new limit |journal=Applied Energy |date=March 2020 |volume=262 |pages=114535 |doi=10.1016/j.apenergy.2020.114535 }} Corrosion monitoring systems utilizing Ultrasonic testing are in place to detect any potential issues. Regular maintenance and inspections help identify and address corrosion concerns before they become significant.

Natrium fuel is made from high-assay, low enriched uranium (HALEU). Latter enriched to contain between 5 and 20 percent uranium. The fuel is in the form of metal uranium slugs that are housed within steel tubes to form fuel rods. Whilst this metallic fuel has a melting point, which is much lower than the ceramic pellets used in the light water reactors, it also has higher heat conduction.

Plant sites are expected to be smaller and 4 times more efficient than conventional plants. Natrium control rods descend using only gravity in case of equipment damage/failure. Power output is a constant 345 MWe. The plant is designed to run at 100 percent output, 24/7. The storage system is designed to work in tandem with intermittent energy sources, responding to their spikes and crashes. It can produce 150% of the rated power output, or 500 MWe for 5.5 hours.{{Cite web|last=Blain|first=Loz|date=2021-03-09|title=Bill Gates's next-gen nuclear plant packs in grid-scale energy storage|url=https://newatlas.com/energy/natrium-molten-salt-nuclear-reactor-storage/|access-date=2021-03-15|website=New Atlas|language=en-US|archive-date=June 6, 2023|archive-url=https://web.archive.org/web/20230606072403/https://newatlas.com/energy/natrium-molten-salt-nuclear-reactor-storage/|url-status=live}}

See also

References

{{Reflist}}