Thallium(III) oxide

{{chembox

| Verifiedfields = changed

| Watchedfields = changed

| verifiedrevid = 470605815

| Name = Thallium(III) oxide

| ImageFile = Tl2O3structure.jpg

| ImageName = Thallium(III) oxide

| OtherNames = thallium trioxide, thallium sesquioxide

|Section1={{Chembox Identifiers

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 1314-32-5

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 8C7MZ48UJ1

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/3O.2Tl/q3*-2;2*+3

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = LPHBARMWKLYWRA-UHFFFAOYSA-N

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 7979876

| SMILES = [O-2].[O-2].[O-2].[Tl+3].[Tl+3]

| EINECS = 215-229-3

| PubChem = 9804116

}}

|Section2={{Chembox Properties

| Properties_ref = {{RubberBible62nd|page=B156}}.

| Formula = Tl2O3

| MolarMass = 456.76 g/mol

| Appearance = dark brown solid

| Density = 10.19 g/cm3, solid (22 °C)

| Solubility = insoluble

| MeltingPtC = 717

| BoilingPtC = 875

| BoilingPt_notes = (decomposes)

| MagSus = +76.0·10−6 cm3/mol

}}

|Section3={{Chembox Structure

| CrystalStruct = Cubic, (Bixbyite) cI80{{cite journal| journal = Physica C| year = 1993 | volume = 215| issue = 1–2 | page = 205| title = Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3|author1=Otto H.H. |author2=Baltrasch R. |author3=Brandt H.J. | doi = 10.1016/0921-4534(93)90382-Z}}

| SpaceGroup = Ia{{overline|3}} (No. 206)

}}

|Section7={{Chembox Hazards

| GHSPictograms = {{GHS06}}{{GHS08}}{{GHS09}}

| GHSSignalWord = danger

| HPhrases = {{HPhrases|H300 + H330 | H373 | H411}}

| PPhrases = {{PPhrases|P273 | P301 + P310 + P330 | P304 + P340 + P310 | P314}}

| GHS_ref = GHS: [https://www.sigmaaldrich.com/product/ALDRICH/204617 Sigma-Aldrich 204617]

| NFPA-H = 4

| NFPA-R = 0

| NFPA-F = 0

| LD50 = 44 mg/kg (oral, rat)

}}

}}

Thallium(III) oxide, also known as thallic oxide, is a chemical compound of thallium and oxygen. It occurs in nature as the rare mineral avicennite.http://www.handbookofmineralogy.org/pdfs/avicennite.pdf Handbook of Mineralogy Its structure is related to that of Mn2O3 which has a bixbyite like structure. Tl2O3 is metallic with high conductivity and is a degenerate n-type semiconductor which may have potential use in solar cells.{{cite journal | title = Electrochemical and photoelectrochemical deposition of Thallium(III) Oxide thin films |author1=Phillips R. J. |author2=Shane M. J. |author3=Switzer J. A. | journal = Journal of Materials Research | year = 1989 | volume = 4 | issue = 4 | pages = 923 | doi = 10.1557/JMR.1989.0923|bibcode=1989JMatR...4..923P |s2cid=96808351 }} A method of producing Tl2O3 by MOCVD is known.{{Cite journal | title = Thallium(III) Oxide by Organometallic Chemical Vapor Deposition |author1=D. Berry |author2=R. T. Holm |author3=R. L. Mowery |author4=N. H. Turner |author5=M. Fatemi |name-list-style=amp | journal = Chemistry of Materials | year = 1991 | volume = 3 | issue = 1 | pages = 72–77 | doi = 10.1021/cm00013a019}} Any practical use of thallium(III) oxide will always have to take account of thallium's poisonous nature. Contact with moisture and acids may form poisonous thallium compounds.

Production

It is produced by the reaction of thallium with oxygen or hydrogen peroxide in an alkaline thallium(I) solution. Alternatively, it can be created by the oxidation of thallium(I) nitrate by chlorine in an aqueous potassium hydroxide solution.Georg Brauer; Handbuch der präparativen anorganischen Chemie, Band 2, S.884; {{ISBN|3-432-87813-3}} (in German)

References

{{reflist}}

{{Thallium compounds}}

{{Oxides}}

Category:Thallium(III) compounds

Category:Sesquioxides