Thompson uniqueness theorem
{{short description|On certain subgroups of a minimal simple finite group of odd order}}
In mathematical finite group theory, Thompson's original uniqueness theorem {{harv|Feit|Thompson|1963|loc= theorems 24.5 and 25.2}} states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. {{harvtxt|Bender|1970}} gave a shorter proof of the uniqueness theorem.
References
- {{Citation | last1=Bender | first1=Helmut | title=On the uniqueness theorem | url=http://projecteuclid.org/euclid.ijm/1256053074 | mr=0262351 | year=1970 | journal=Illinois Journal of Mathematics | issn=0019-2082 | volume=14 | issue=3 | pages=376–384| doi=10.1215/ijm/1256053074 | doi-access=free }}
- {{Citation | last1=Bender | first1=Helmut | last2=Glauberman | first2=George | author2-link=George Glauberman | title=Local analysis for the odd order theorem | publisher=Cambridge University Press | series=London Mathematical Society Lecture Note Series | isbn=978-0-521-45716-3 | mr=1311244 | year=1994 | volume=188}}
- {{Citation | last1=Feit | first1=Walter | author1-link=Walter Feit | last2=Thompson | first2=John G. | author2-link=John G. Thompson | title=Solvability of groups of odd order | url=http://projecteuclid.org/Dienst/UI/1.0/Journal?authority=euclid.pjm&issue=1103053941 | mr=0166261 | year=1963 | journal=Pacific Journal of Mathematics | issn=0030-8730 | volume=13 | pages=775–1029| doi=10.2140/pjm.1963.13.775 | doi-access=free }}
Category:Theorems about finite groups
{{abstract-algebra-stub}}