Time-resolved mass spectrometry

{{multiple issues|

{{notability|date=July 2019}}

{{COI|date=July 2019}}

}}

Time-resolved mass spectrometry (TRMS) is a strategy in analytical chemistry that uses mass spectrometry platform to collect data with temporal resolution.Urban P.L., Chen Y.-C., Wang Y.-S. 2016, Time-Resolved Mass Spectrometry: From Concept to Applications. Wiley, Chichester, {{ISBN|978-1-118-88732-5}}, http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118887328.html{{cite journal |doi=10.1016/j.trac.2012.11.010 |title=Time-resolved mass spectrometry |year=2013 |last1=Chen |first1=Yu-Chie |last2=Urban |first2=Pawel L. |journal=TrAC Trends in Analytical Chemistry |volume=44 |pages=106–20}}{{cite journal |doi=10.1255/ejms.1176 |title=Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes |year=2012 |last1=Rob |first1=Tamanna |last2=Wilson |first2=Derek |journal=European Journal of Mass Spectrometry |volume=18 |issue=2 |pages=205–14 |pmid=22641726|s2cid=25038189 }} Implementation of TRMS builds on the ability of mass spectrometers to process ions within sub-second duty cycles. It often requires the use of customized experimental setups. However, they can normally incorporate commercial mass spectrometers. As a concept in analytical chemistry, TRMS encompasses instrumental developments (e.g. interfaces, ion sources, mass analyzers), methodological developments, and applications.

Applications

An early application of TRMS was in the observation of flash photolysis process.{{cite journal|title=Flash Photolysis and Time-Resolved Mass Spectrometry. I. Detection of the Hydroxyl Radical|journal=The Journal of Chemical Physics|volume=46|issue=3|pages=967–972|doi=10.1063/1.1840834|year=1967|last1=Meyer|first1=Richard T.|bibcode=1967JChPh..46..967M }} It took advantage of a time-of-flight mass analyzer.{{cite journal|title=Apparatus for flash photolysis and time resolved mass spectrometry|date=1967 |doi=10.1088/0950-7671/44/6/303 |url=http://iopscience.iop.org/0950-7671/44/6/303|accessdate=27 January 2014 |last1=Meyer |first1=R. T. |journal=Journal of Scientific Instruments |volume=44 |issue=6 |pages=422–426 |bibcode=1967JScI...44..422M |url-access=subscription }}

TRMS currently finds applications in the monitoring of organic reactions,{{cite journal |doi=10.1021/ac200842e |title=Development of Submillisecond Time-Resolved Mass Spectrometry Using Desorption Electrospray Ionization |year=2011 |last1=Miao |first1=Zhixin |last2=Chen |first2=Hao |last3=Liu |first3=Pengyuan |last4=Liu |first4=Yan |journal=Analytical Chemistry |volume=83 |issue=11 |pages=3994–7 |pmid=21539335|s2cid=5294644 }} formation of reactive intermediates,{{cite journal |doi=10.1002/anie.201004861 |title=Detecting Reaction Intermediates in Liquids on the Millisecond Time Scale Using Desorption Electrospray Ionization |year=2011 |last1=Perry |first1=Richard H. |last2=Splendore |first2=Maurizio |last3=Chien |first3=Allis |last4=Davis |first4=Nick K. |last5=Zare |first5=Richard N. |journal=Angewandte Chemie International Edition |volume=50 |pages=250–4 |pmid=21110361 |issue=1|s2cid=205360159 }} enzyme-catalyzed reactions,{{cite journal |doi=10.1039/C3RA42873G |title=Spatiotemporal effects of a bioautocatalytic chemical wave revealed by time-resolved mass spectrometry |year=2014 |last1=Ting |first1=Hsu |last2=Urban |first2=Pawel L. |journal=RSC Advances |volume=4 |issue=5 |pages=2103–8|bibcode=2014RSCAd...4.2103T |s2cid=93801916 }} convection,{{cite journal |doi=10.1039/C2RA21695G |title=Recording temporal characteristics of convection currents by continuous and segmented-flow sampling |year=2012 |last1=Li |first1=Po-Han |last2=Ting |first2=Hsu |last3=Chen |first3=Yu-Chie |last4=Urban |first4=Pawel L. |journal=RSC Advances |volume=2 |issue=32 |pages=12431–7|bibcode=2012RSCAd...212431L |url=https://ir.nctu.edu.tw:443/bitstream/11536/20902/1/000312148500058.pdf }} protein folding,{{cite journal |doi=10.1073/pnas.0807005105 |title=Stepwise evolution of protein native structure with electrospray into the gas phase, 10-12 to 102 s |year=2008 |last1=Breuker |first1=K. |last2=McLafferty |first2=F. W. |journal=Proceedings of the National Academy of Sciences |volume=105 |issue=47 |pages=18145–52 |bibcode=2008PNAS..10518145B |jstor=25465429 |pmid=19033474 |pmc=2587555|doi-access=free }} extraction,{{cite journal |doi=10.1039/C3RA48023B |title=Automated system for extraction and instantaneous analysis of millimeter-sized samples |year=2014 |last1=Hu |first1=J.-B. |last2=Chen |first2=S.-Y. |last3=Wu |first3=J.-T. |last4=Chen |first4=Y.-C. |last5=Urban |first5=P L. |journal=RSC Advances |volume=4 |issue=21 |pages=10693–10701|bibcode=2014RSCAd...410693H |s2cid=44124259 }} and other chemical and physical processes.

Temporal resolution

TRMS is typically implemented to monitor processes that occur on second to millisecond time scale. However, there exist reports from studies in which sub-millisecond resolutions were achieved.

References